

- 1-1. Overview
- 1-2. Research Areas

2. Programs in Al Graduate School

- 2-1. Education
- 2-2. Internship in Industry
- 2-3. International Research Collaboration

3. Partnership Programs


- 3-1. Hungary-CAU Al/contents Conference
- 3-2. Hungary-CAU Research/Education Collaboration

1-1. Overview

- 1-2. Research Areas
 - 1) recommendation systems
 - 2) natural language processing
 - 3) optimization in deep learning

VISION

Vision of Da Vinci Al Graduate School

Vision

Nurturing talents contributing to human society using Al

CORE Ability

Creative, Open, Renovative, Ethical

Al Campus

- Al Campus Construction
- Foundation of CAU AI Committee
- Foundation of Da Vinci Al Academy
- CAU AI Data Lake
 Construction
- Al K-MOOC lecture

AIR&D

- Development of AI defense technology
- Development of e-Advisor with Hanhwa
- Al image process technology for practical satellites 3, 3A, 7A
- Cooperation of Fuel System-Drone-Robot with Doosan

Da Vinci Al Talents

- Da Vinci Institute of Learning Innovation
 - Al Da Vinci Learning
 - Da Vinci Classroom
- Student Excellence
- Al and programming education for all students

Long-term Al Core Research Tasks

Credible Al

Overcoming the limitations of the black box model for efficient decision-making eXplainable Al

Active research field of Al industry

Active research field of PI

Automated Al

Bridging the gap in application of industrial Al technology

Automated ML

Active research field of Al industry

Active research field on high demand

Universal Al

Generalization of AI due to diversification of learning strategies

Robust Al

Active research field of CAU

Active research field of CAU

AI+Language

Research

Faculty Members

Core Al

Cho,

Yoon-Sik

Applied Al

Hong, Byung-Woo

Lee, Kyungjae

Lee, Changhee

Kim, Bugeun

Credible AI

AI+Medical

Paik, Joonki

Choi,

Jongwon

Al+Language

Kim, Youngbin

Kim, Junyeong

Automated Al

Universal AI

Kwon,

Kim,

Eunwoo

Junseok

AI+Vehicles

AI+Defense

Lee, Jaesung

Lee, Hwanhee

AI+Contents

Al+Language

1-1. Overview

- 1-2. Research Areas
 - 1) recommendation systems
 - 2) natural language processing
 - 3) optimization in deep learning

1-1. Overview

1-2. Research Areas

- 1) recommendation systems
- 2) natural language processing
- 3) optimization in deep learning

1-1. Overview

1-2. Research Areas

- 1) recommendation systems
- 2) natural language processing
- 3) optimization in deep learning

2. Programs in Al Graduate School

2-1. Education

- 2-2. Internship in Industry
- 2-3. International Research Collaboration

Education

Da Vinci Al Graduate School

Creative

Creative AI experts solving social problems

Open

Open Al expert
Pursuing
convergence

Renovative

Innovative AI expert leading the future society

Ethical

Ethical AI Experts
Creating the
Common Good

Creative

Creative AI experts training for on-site problem solving based on industrial demand

Industrial demand-based projects

Al applications in all courses

Oper

Open Al education through the use of Al open source platform

Use of AI open source platform

Open education with AI literacy course

Renovative

Convergence thinking education through completion of other academic convergence

Collaboration with professors from other fields

Convergence of other majors

Ethical

Ethical AI experts training through AI ethics and fairness education

Human-centered AI education
AI Ethics and Fairness Course

CAU-AI Core Tech Seminar

Bi-weekly online seminar about trends of artificial intelligence

International/Domestic Researchers

International/Domestic Industrial Speaker

Date	Name	Affiliation	Topic	Date	Name	Affiliation	Topic
Jun. 22, 2022	Jason Friedman	Tel Aviv Univ.	Using arm movements to understand perceptual decision making, and vice- versa	May. 26, 2022	Byoungho Heo	NAVER	Optimizers for deep learning: From SGD to AdamP
Jul. 06, 2022	Youngdeok Seo	Inha Univ.	Recommendation System	Jun, 10, 2022	Seunghwan Kim	LG AI Research	LG and AI - 1
Aug. 17, 2022	lug. 17, 2022 Jaemin Jo (Univ. of North Carolina at Chapel Hill	Vision-and-Language Learning: Pretraining, Transfer Learning, and Evaluation	Jul. 22, 2022	Donghyun Won	Motional, USA	Challenges in Perception System for Autonomous Driving
Sep. 02, 2022	Seungho Seo	DFKI	Multimodal Human Activity Recognition with Industrial Applications	Aug. 04, 2022	Youngjae Lee	S2W	Shedding new light on the language of the Dark Web
Sep. 30, 2022	Mina Lee	Stanford	Writing with Artificial Intelligence	Oct. 14, 2022	Kyoungsik Moon	META	Towards 3D Human Reconstruction in the Wild
Oct. 28, 2022	Kimin Yun	ETRI	DeepView Project	Oct. 18, 2022	Woohyung Lim	LG AI Research	LG and AI - 2
Nov. 25, 2022	Simon Korman	Univ. of Haifa	Computer Vision in the Wild	Dec. 09, 2022	Junbeom Cha	Kakao Brain	Computer Vision in the Wild

Al Special Course

Online AI Curriculum

Al Seminar for Non-majors

KMOOC Open Lecture

AI Curriculum for Freshman

International Education

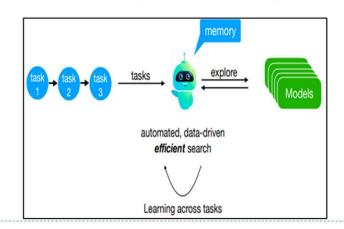
ACDL 2022 an Online and Onsite Course

- · The 5th Advanced Course on Data Science & Machine Learning(ACDL)
 - August 22 August 26, 2022

 - University of Catania, Siena, Italy The course will involve a total of 36~40 hours of lectures

Topics

- Artificial Intelligence Reinforcement Learning Algorithm
 - Big Data Networks
- Cognitive Computing


- General
- Generative Adversari
- And so on

Automatic Machine Learning

- · Part 1 : Why automate machine Learning?
 - High-level goals
- · Part 2: How AutoML works?
 - The machinery
- · Part 3 : Learning to (automatically) learn?

International Education

2-1. Education

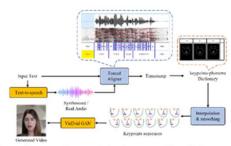
2-2. Internship in Industry

2-3. International Research Collaboration

'22 AI Graduate SchoolNC Soft Cooperation Fall Long-Term Intern Program

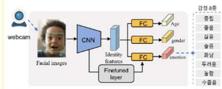
- Al Graduate School and NC Soft collaboration intern program to cultivate exceptional students
- The program aims to nurture talents who can understand industry-used technologies
- We are currently recruiting 5-10 interns every semester, starting from the second half of 2022

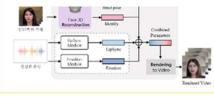
■ Recruitment Field


Center	Lab	
Al Center	Vision AI Lab, Graphics Lab, AI Production Lab(Digital Human Solution Team, MLOps Team)	
Al Biz Center	Applied Al Lab, Finance Biz Lab(Finance Al RD)	
NLP Center	NLP Lab	

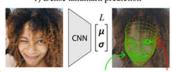
Research on text/voice-based virtual human's facial generation technology (CJ Olive Networks Internship Program)

Two Ph.D. candidates from the Al Graduate School participated

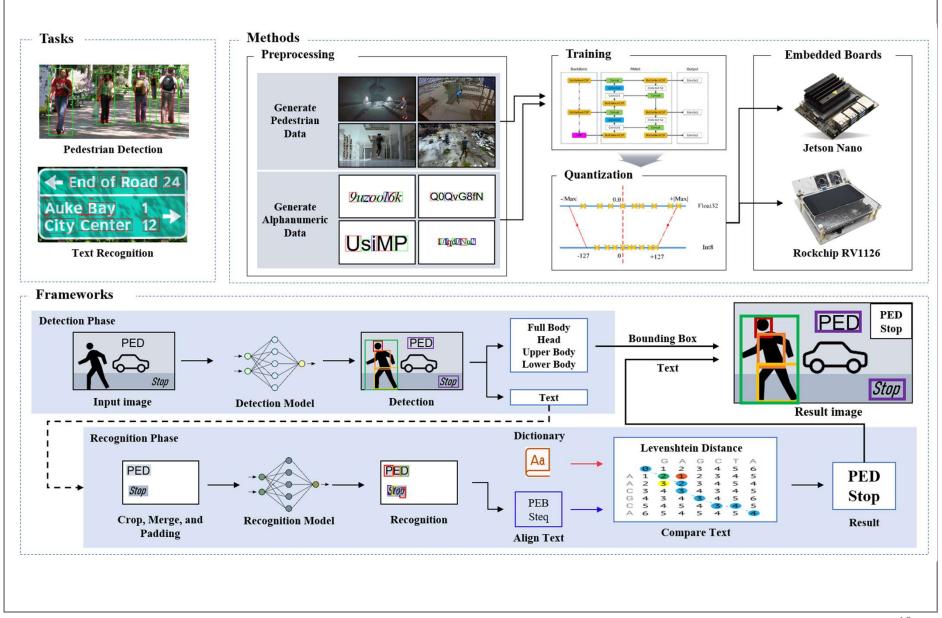

- 1. Generating Korean-speaking virtual human videos based on text and voice
- ▶ Built a dictionary matching facial landmarks and phonemes with short-length videos and texts for each person
- ► Generating facial landmarks for the GAN model
- ► Facial synthesis using GAN based on the generated facial landmarks

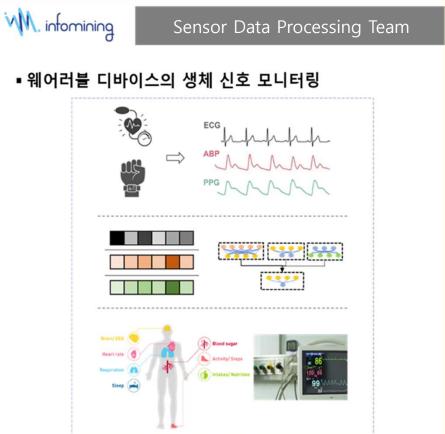

- ► Text-based model shows flexible results
- ► Possible to build a dictionary of facial landmarks and phonemes with just short

- 2. Nonverbal understanding and expression model
- ▶ Development of a method for recognizing user's emotions, age, and gender


- ► Robust generation method for changes in facial angles through Face 3D reconstruction
- ▶ Nonverbal expression method based on the given virtual human's emotions

- 3. Development of the next-generation interactive digital human solution
- ▶ Blending method for natural emotion motions and lip animations
- ► Development of a method for generating chin, tongue, and Adam's apple animations that match lip animation


1) Dense landmark prediction


Doosan Al CoE: Simultaneous Pedestrian Detection & Text Recognition on Embedded Board

Other Internship Projects

2. Programs in Al Graduate School

- 2-1. Education
- 2-2. Internship in Industry
- 2-3. International Research Collaboration

International Research Collaboration (1/2)

2

Resource-aware Machine Learning

Instruction on data analysis techniques and implementation of machine learning algorithms on embedded systems

A Study on Next Generation Journalism Based on Big Data and Deep Learning

The goal is to take automated journalism to the next level by utilizing news big data and deep learning language models.

Introduction and study of the latest data analysis techniques and machine learning techniques

3

An international joint study of Al technology for predicting complications after orthopedic surgery

Using health care big data, we developed a gastric cancer prediction model using a gastric cancer patient and other diseases diagnosed together.

International Research Collaboration (2/2)

An International Joint Study on the Development of Healthcare and Medical Al

A study of a high-performance disease prediction model based on deep learning. An interpretable deep learning model study. A study on the causal relationship and treatment effect of machine learning-based questions.

An International Joint Study on the Analysis Technology of Healthcare Data Variables Based on Deep Learning

This study proposes a deep learning-based feature selection technique using self-supervised learning and the correlation structure of data using unlabeled public data. the Development of Healthcare and Medical Al

3

This study proposes a complex time series data-based survival analysis model through a deep learning-based model.

An International Joint Study on

CAR

An international joint study of Al technology for predicting complications after orthopedic surgery

This study examines AutoML technology that can be easily used by artificial intelligence non-experts by reflecting the specificity of healthcare and medical data.

3. Partnership Programs

3-1. Hungary-CAU Research/Education Collaboration

Hungary-CAU Research/Education Collaboration

Graduate Scholarship Program

- CAU awards scholarships to 5 graduate students selected by Hungarian Rector's Conference
- Chung-Ang University Young Scientist Scholarship (CAYSS)
- Al Graduate School Scholarship
- Benefits: Tuition fee waivers for four semesters (including Application and Admission Fees)

Undergraduate Student Exchange Program

Hungarian universities currently collaborating
 The University of Szeged,
 University of Debrecen, University of Pec

Scholarship and On-Campus Internship for International Students

Scholarship	Eligibility	Benefits	
CAU Global Student Internship	- Native speakers of English or French - Selection via interview	- Approximately \$1000 per semester - Official certificate by OIA	
CAU OIA Fellowship	- Fluency in English - Good computer skills - Selection via interview - Approximately \$1000 per month - Official certificate by OIA		
CAU Global Opportunity Scholarship	According to student exchange agreement	On-campus accommodation expenses	
Global Korea Scholarship	Exchange students deemed qualified by the NIIED(National Institute for International Education)	Airfare, Monthly stipend, Settlement Allowance, Insurance Fee	
ASEM DUO Scholarship	Students from European partner universities	4,000 Euros (8,000 Euros for 1 pair)	
Scholarship for Fee-paying students	According to student exchange agreement	For 40 students or above, 50% of tuition waived (differs according to number of students)	

Summary table of international partnership

	No. of Countries (Europe)	No. of Universities	
Overall	74 (31)	621 (187)	
Partnership for Exchange Student	69 (29)	458 (150)	
Partnership for Visiting Professor/Scholar	40 (23)	113 (57)	

Supports for International Students

GLAM Global Ambassador

CALIS

Leaders of International Students GCC Global Community

Center

Global Fairs

CAKE

Korean Editing

CANGO

Cultural Activity for Next Great Opportunity

Number of exchange students in the recent 3 years

Long-term	Exchange	Short-term Exchange		
Invited	Dispatched	Invited	Dispatched	
1980	814	129	286	

International Partnership

(Provisional) Hungary-CAU Research/Education Collaboration

Selection Criteria

• TBD

Participants

• CAU: TBD


• ELTE: TBD

Programs

Research on Al and contents

• Education on AI and contents

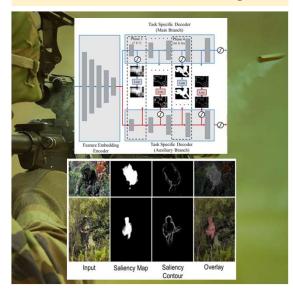
Al Graduate School, Chung-Ang University

(06974) 84 Heukseok-ro, Dongjak-gu, Seoul, Republic of Korea, Building 310, Room 824, Al Graduate School

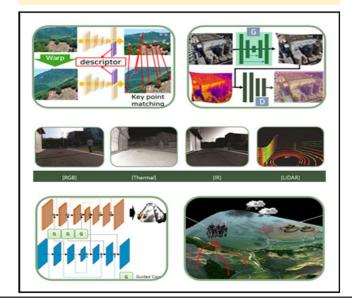
Tel: +82-2-820-6748

Web

- CAU https://www.cau.ac.kr/
- Al Graduate School https://aigs.cau.ac.kr/



Research Topics


Image Processing and Intelligent systems Laboratory

Al Defense Monitoring

Al based Battlefield Visualization

Dual-Use Semantic Al

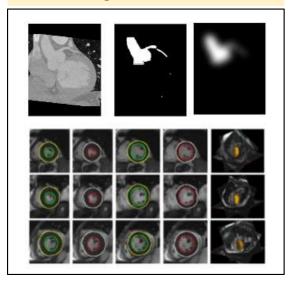
Research Projects

"Artificial Intelligence Future Defense Technology"

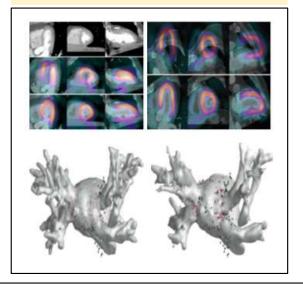
- Edge Camera Boundary Monitoring (2017-2021)
- Future Defense (2020-2023)
- Dual-Use technology (2020-2023)
- Deep View Stage 3 (2021-2023)

Publications

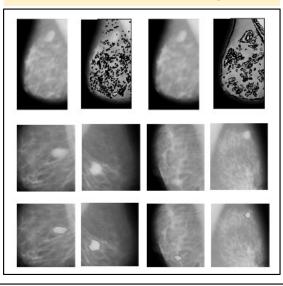
- Region-Based Dehazing via Dual-Supervised Triple-Convolutional Network, IEEE Trans. Multimedia, 2021.
- Camera Orientation Estimation Using Motion-Based Vanishing Point Detection for Advanced Driving Assistance, IEEE Trans. ITS, 2021.
- HLDNet: Abandoned Object Detection Using Hand Luggage Detection Network, IEEE Consumer Electronics Magazine, 2021.



Research Topic


Image Laboratory

http://image.cau.ac.kr


Segementation

Registration

Salient contour map

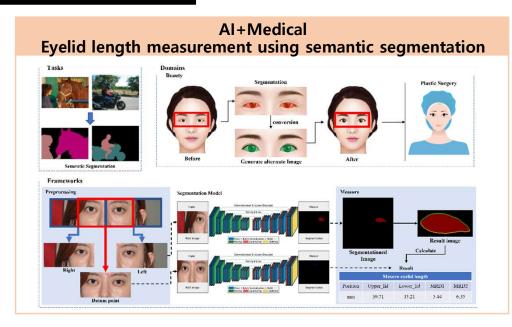
Collaborations

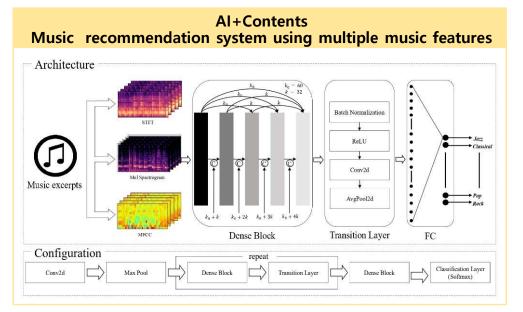
Recent Studies

IEEE Conference on Computer Vision and Pattern Recognition, July.2017.

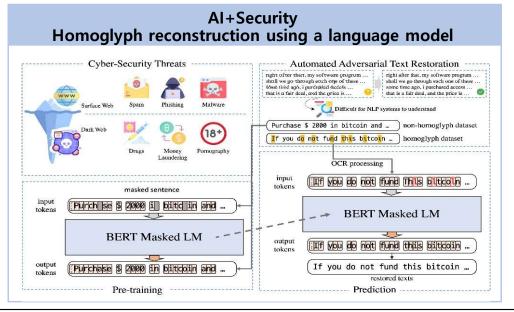
IEEE Transactions on Image Processing(TIP), 2020

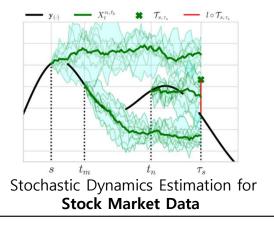
International Conference on Computer Vision(ICCV), 2021

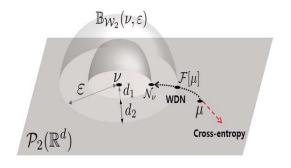

International Conference on Robotics and Automation(ICRA), 2021



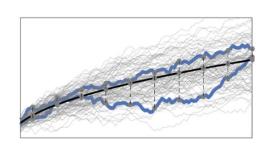
Research Progress


AutoML Lab(Professor Jaesung Lee)




Research Topic

Computer Vision Machine Learning Lab (prof. Junseok Kwon)



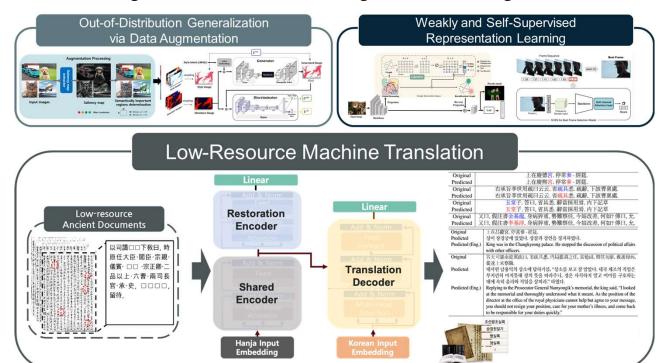
- Machine learning: Optimal transport, Wasserstein ambiguity, Neural ODE, MCMC
- **Deep learning:** Generative adversarial network, Graph convolution, Meta learning
- High-level vision: Object detection, Object tracking, Segmentation, 3D Point clouds
- Low-level vision: Dehazing, Super-resolution, and Low-light enhancement

Distributional Certification of **Noisy Labeled Data**

Markovian Temporal Dynamics Generation for **Stochastic Continuous Data**

Our goal is to develop an artificial intelligence model that is robust to changes in the external environment such as noise and can theoretically explain the ambiguity of data.

Publications



Intelligent Information Processing

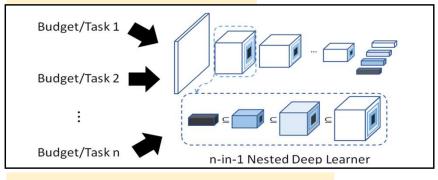
Lab.

Intelligent Information Processing Lab.(Prof. YoungBin Kim)

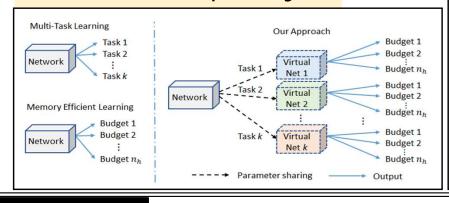
"Research on accurate restoration and efficient multilingual translation of diverse low-resource documents"

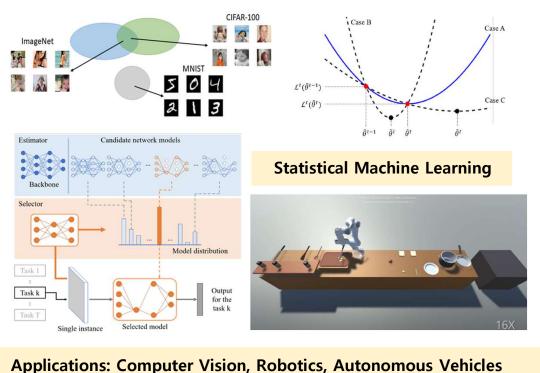
Publications

- Weakly supervised semantic segmentation via Graph RecalibratiOn with Scaling Weight uNit; Engineering Applications of Artificial Intelligence, 2023
- Game effect sprite generation with minimal data via conditional GAN; Expert Systems with Applications, 2023
- Restoring and Mining the Records of the Joseon Dynasty via Neural Language Modeling and Machine Translation; NAACL, 2021.
- TrafficBERT: Pre-trained Model with Large-scale Data for Long-range Traffic Flow Forecasting; Expert Systems with Applications, 2021.
- Whose Opinion Matters? Analyzing Relationships between Bitcoin Prices and User Groups in Online Community; Social Science Computer Review, 2020.
- Visual Analytics with Interpretable and Interactive Recurrent Neural Networks on Electronic Medical Records; IEEE VIS, 2019.



Research Topics


Vision & Learning Laboratory (Prof. Eunwoo Kim)


Multi-Task Deep Learning

Resource-Efficient Deep Learning

Automated Machine Learning / Continual Learning

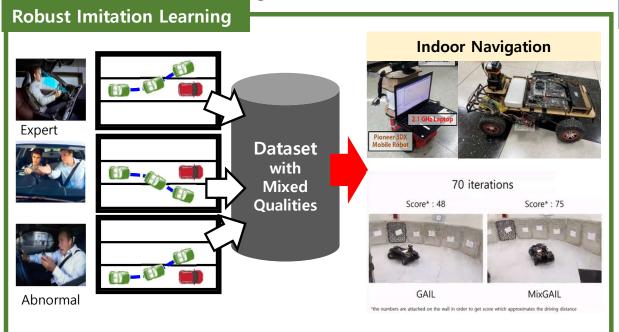
Lab Members

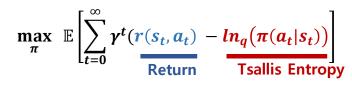
9 Grad Students, 5 Undergrad Students (2022.09)

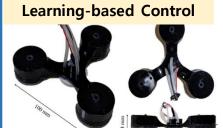
Recent Studies

- Helpful or Harmful: Inter-Task Association in Continual Learning, ECCV, 2022.
- Deep Elastic Networks with Model Selection for Multi-Task Learning, ICCV, 2019
- Deep Virtual Networks for Memory Efficient Inference of Multiple Tasks, CVPR, 2019.
- NestedNet: Learning Nested Sparse Structures in Deep Neural Networks, CVPR, 2018.

Collaborations




Robotics and Artificial Intelligence Lab



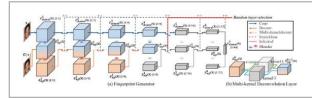
- Entropy-based Efficient Exploration
- Online Learning for Robotics
- Control of complex dynamical systems

Publications

- SWAD: Domain Generalization by Seeking Flat Minima, NeurIPS, 2021.
- Optimal Algorithms for Stochastic Multi-Armed Bandits with Heavy Tailed Rewards, **NeurIPS, 2020.**
- Maximum Causal Tsallis Entropy Imitation Learning, NeurIPS, 2018.

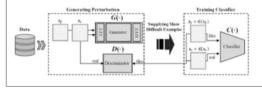
Visual Intelligence Laboratory

- Semi-supervision Domain Adaptation, Active Learning
- Al security Deepfake detection, Anti-spoofing
- Al+X Al+Contents, Al+Heritage, Al+Autonomous driving
- 1 Faculty Jongwon Choi (Ph.D.)
- 4 Ph.D Candidate MinGyu Lee, Seo Seung Mo, Seungjin Jung, Hojoon Jung
- 17 MS Candidate -Jong Min Lee, PyoungGeon Kim, Youn Jong Su, JaeYoon Lee, Soo Hyun Park, Hwang Jin Soo, Minji Kwak, Jongwook Choi, Hyungjun Lim, Dohee Kim, Suk Hyun Kim, Yuieong Oh, Taeheon Lee, Suveon Cha, Taehoon Kim, Jooyoung Lee, Cho Hyun Jin


Recent Studies

AAAI2022 & ECCV2022 & WACV2022 **Self-supervised Deepfake** Detection

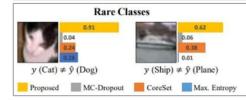
WACV2022 **Novel-view Synthesis (NeRF)**


CVPR2021 **Active Learning in the Wild**

AAAI2020 Domain Adaptation for Large Gap

FingerprintNet: Synthesized Fingerprints for Generated Image Detection

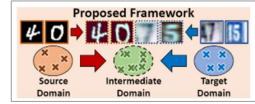
Yonghyun Jeong, Doyeon Kim, Youngmin Ro, Pyounggeon Kim, Jongwon Choi European Conference on Computer Vision 2022 (ECCV2022) [Top-tier CV Conference], [Paper] [Arxiv] [Supplementary] [Github]


FrePGAN: Robust Deepfake Detection Using Frequency-level Perturbations

Yonghyun Jeong, Doyeon Kim, Youngmin Ro, Jongwon Choi AAAI Conference on Artificial Intelligence 2022 (AAAI2022) [Top-tier AI Conference], [Paper] [Arxiv] [Supplementary] [Github]

Novel-View Synthesis of Human Tourist Photos

Jonathan Freer, Kwang Moo Yi, Wei Jiang, Jongwon Choi, Hyung Jin Chang Winter Conference on Applications of Computer Vision 2022 (WACV2022), [Paper] [Supplementary] [Github]

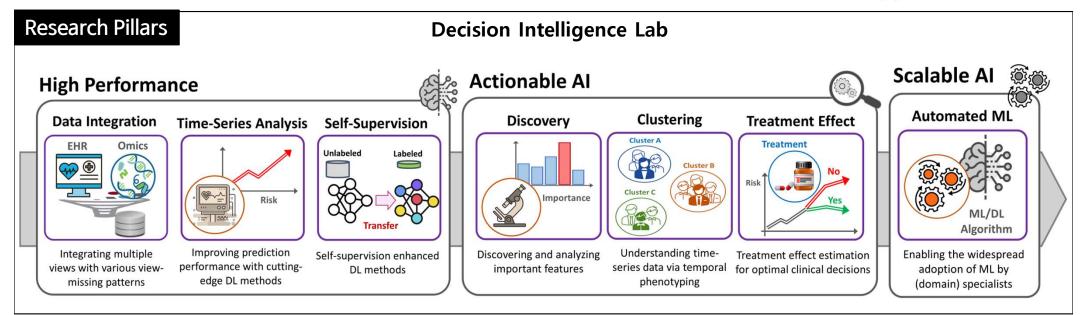


VaB-AL: Incorporating Class Imbalance and Difficulty with Variational Bayes for Active Learning

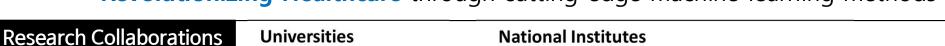
longwon Choi*, Kwang Moo Yi*, Jihoon Kim, Jinho Choo, Byoungjip Kim, Jin-Yeop Chang, Youngjune Gwon, Hyung Jin Chang

(* Equally contributed)

IEEE Conference on Computer Vision and Pattern Recognition 2021 (CVPR2021) [Top-tier CV Conference], [Paper] [Arxiv] [Supplementary] [Github]



Visual Domain Adaptation by Consensus-based Transfer to Intermediate Domain


Jongwon Choi, Youngjoon Choi, Jihoon Kim, Jinyeop Chang, Ilhwan Kown, Youngjune Gwon, Seungjai Min AAAI Conference on Artificial Intelligence (AAAI2020) [Top-tier AI Conference],

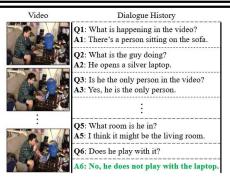
[Paper] [Supplementary]

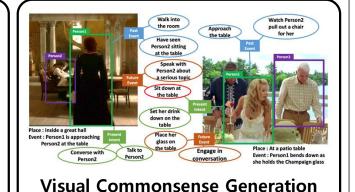
"Revolutionizing Healthcare through cutting-edge machine learning methods"

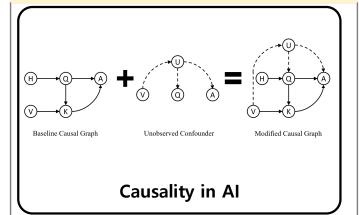
University of Cambridge

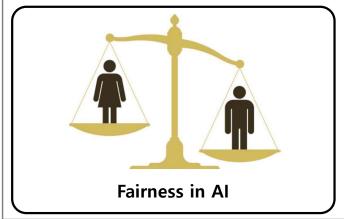
Selected Papers

- C Lee, F. Imrie, M. van der Schaar, "Self-Supervision Enhanced Feature Selection with Correlated Gates," ICLR, 2022.
- A. Curth, **C. Lee**, M. van der Schara, "SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data," *NeurIPS*, 2021.
- C. Lee, A. Light, E. Saveliev, M. van der Schaar, V. Gnanapragasam, "Developing Machine Learning Algorithms for Dynamic Estimation of Progression during Active Surveillance for Prostate Cancer," *npj Digital Medicine*, 2022.
- C. Lee, A. Light, A. Alaa, D. Thurtle, M. van der Schaar, V. Gnanapragasam, "Application of a novel ML framework for predicting non-metastatic PC-specific mortality in men using the SEER database," *The Lancet Digital Health*, 2021.

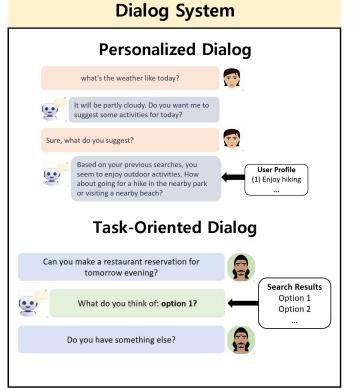

Intelligent Multimodal Reasoning (IMR) Lab.

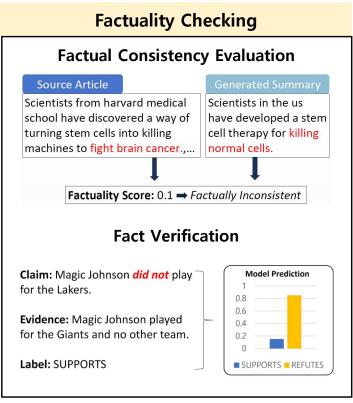

Multimodal Learning (CV + NLP)





Machine Learning


Publications


- Information-Theoretic Text Hallucination Reduction for Video-Grounded Dialogue, EMNLP, 2022
- Selective Query-guided Debiasing for Video Corpus Moment Retrieval, ECCV, 2022
- Structured Co-reference Graph Attention for Video-grounded Dialogue, AAAI, 2021
- Modality Shifting Attention Network for Multi-modal Video Question Answering, CVPR, 2020
- VLANet: Video-Language Alignment Network for Weakly-supervised Video Moment Retrieval, ECCV, 2020
- Progressive Attention Memory Network for Movie Story Question Answering, CVPR, 2019

Language Intelligence Laboratory

Document Summarization Article Summarization Scientists from harvard medical Scientists in the us have school have discovered a way of developed a stem cell therapy turning stem cells into killing for fighting brain cancers. machines to fight brain cancer. (... **Dialogue Summarization** Person1: What makes you think you are able to do the job? Person2: My major is Automobile Designing and I have received my master's degree in science. I think I can do it well. Person1: What kind of work were you responsible for the past employment? Person2: I am a student engineer who mainly took charge of understanding the corrosion resistance of various materials. Person1 is interviewing Person2 about Person2's ability and previous experience.

"Research on Core Technologies for Knowledge Grounded Text Generation"

Selected Publications

- Masked Summarization to Generate Factually Inconsistent Summaries for Improved Factual Consistency Checking, NAACL 2022 Findings
- QACE: Asking Questions to Evaluate an Image Caption, EMNLP 2021 Findings
- CrossAug: A Contrastive Data Augmentation Method for Debiasing Fact Verification Models, CIKM 2021
- UMIC: An Unreferenced Metric for Image Captioning via Contrastive Learning, ACL 2021
- KPQA: A Metric for Generative Question Answering Using Keyphrase Weights, NAACL 2021
- Improving Neural Question Generation using Answer Separation, AAAI 2019

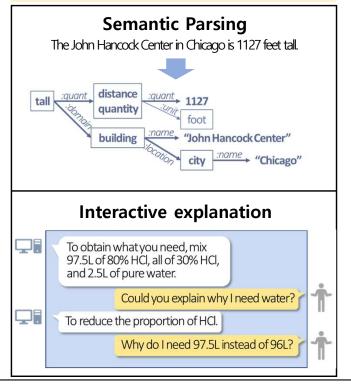
Explainable Language Understanding Laboratory

Natural Language Inference

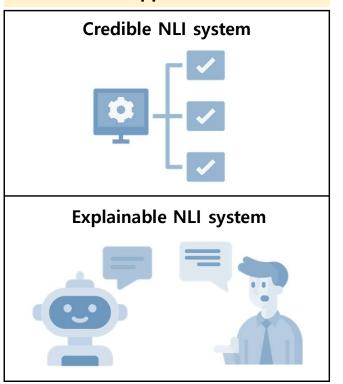
Numerical/Mathematical Inference

Juan drives to work. Because of traffic conditions, he averages 22 miles per hour. He returns home, averaging 32 miles per hour. The total travel time is 2.25 hours.

Q. Write and solve an equation to find the time Juan spends driving to work.



A: 22x = 32y and x+y = 2.25


Inference with Text and Tables

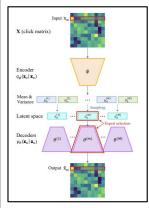
Explainable NLI model

Credible Application of NLI

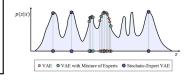
"Towards **an AI system** that **ensures its explainability and credibility** through **language-based interactions.**"

Publications

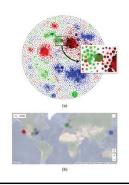
- B. Kim, K. Ki, S. Rhim, G. Gweon, "EPT-X: An Expression Pointer Transformer model that generates eXplanations for numbers," ACL, 2022
- D. Lee, K. Ki, **B. Kim**, G. Gweon, "TM-generation model: a template-based method for automatically solving mathematical word problems," *J. of Supercomputing 77(12)*, 2021
- K. Ki, D. Lee, **B. Kim**, G. Gweon, "Generating equation by utilizing operators: GEO model," *COLING*, 2020
- B. Kim, K. Ki, D. Lee, G. Gweon, "Point to the expression: Solving algebraic word problems using the expression-pointer transformer model," EMNLP,
 2020



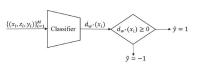
Data Science Lab


Recommender System

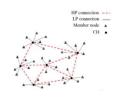
Stochastic-Expert VAE for CF


Learning User Behavior Pattern using Stochastic embedding, SOTA results on

SOTA results on Netflix, MovieLens datasets


Multimodal Generative model

Apache Spark based multimodal social network implementation
Using Map-Reduce framework for distributed computation



Fair - Al

Removing data bias through AI

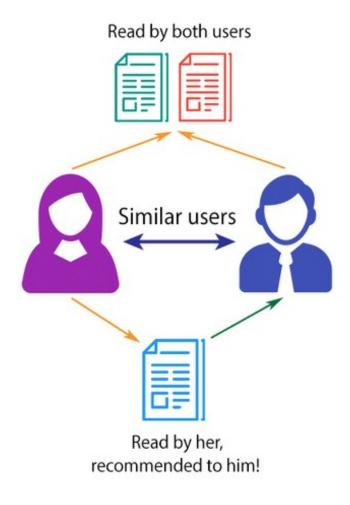
ML Prediction under fairness constraints : Distributed Fair Al

Toward Graph-based XAI using Multimodal Social network

International Collaborations

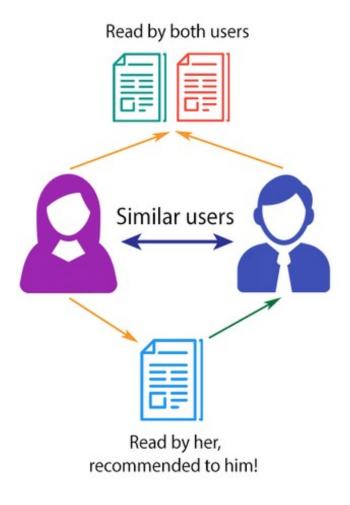
Selected Publications

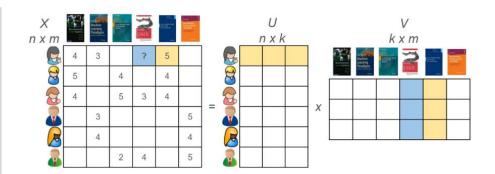
- MEME: Multi-Encoder Multi-Expert Framework with Data Augmentation for Video Retrieval, SIGIR, 2023.
- Stochastic Expert Variational Autoencoder for Collaborative Filtering, WWW, 2022.
- Detecting incongruent news headlines with auxiliary textual information, Expert Syst Appl, 2022
- Point of interest recommendations based on the anchoring effect in location-based social network services, Expert Syst Appl, 2021.
- Latent Space Model for Multi-Modal Social Data, WWW, 2016.


Stochastic-Expert Variational Autoencoder for Collaborative Filtering

Collaborative Filtering

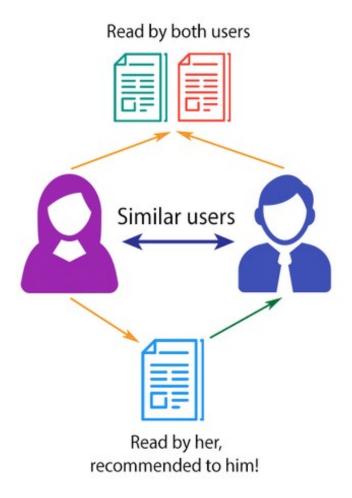
COLLABORATIVE FILTERING

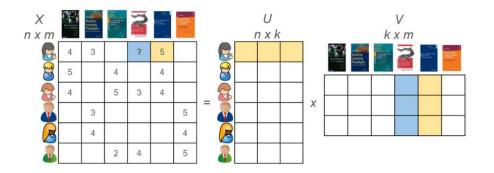




Collaborative Filtering

COLLABORATIVE FILTERING

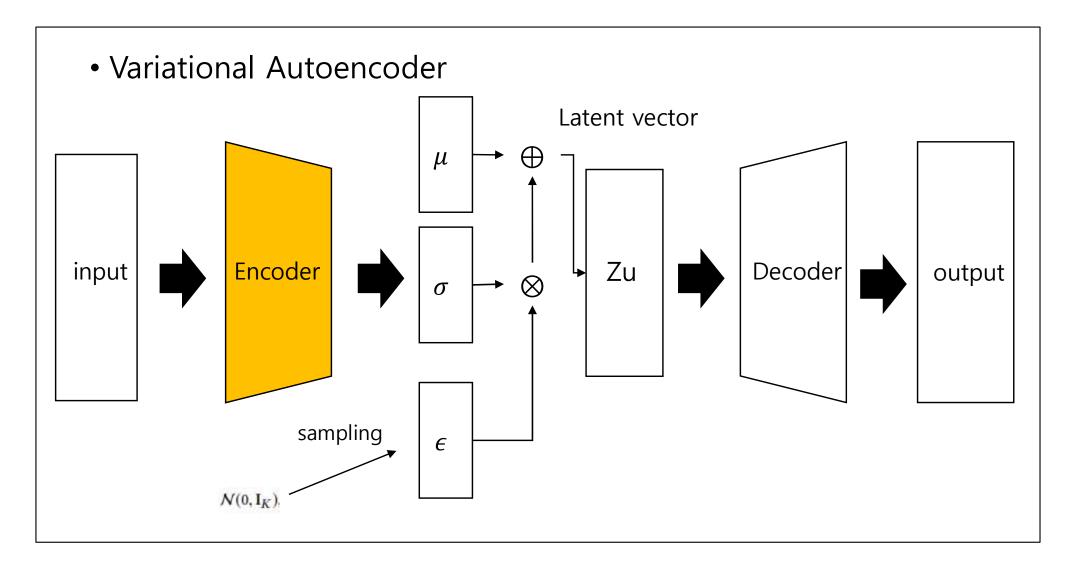

Matrix Factorization



Neural Collaborative Filtering

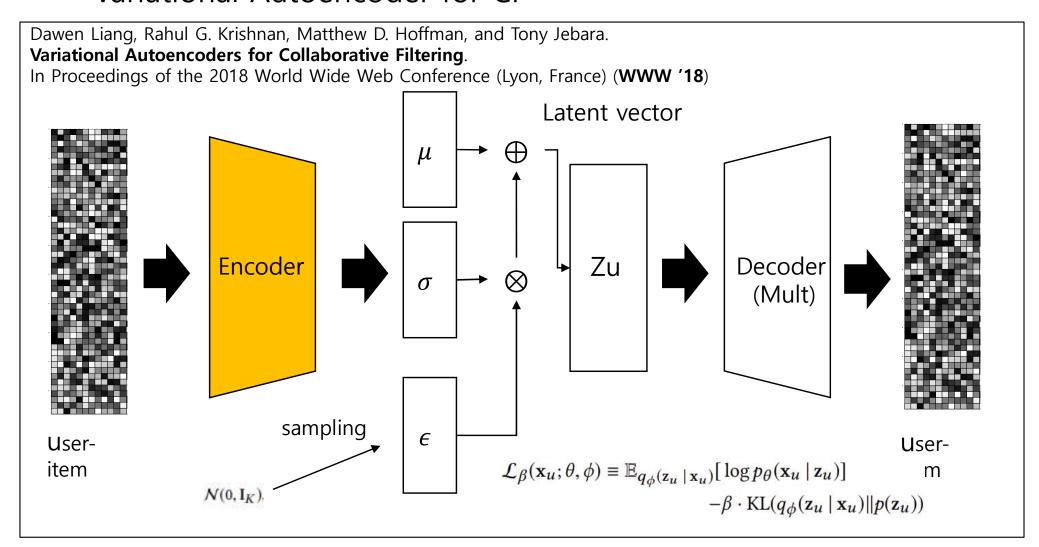
COLLABORATIVE FILTERING

Matrix Factorization


Dawen Liang, Rahul G. Krishnan, Matthew D. Hoffman, and Tony Jebara.

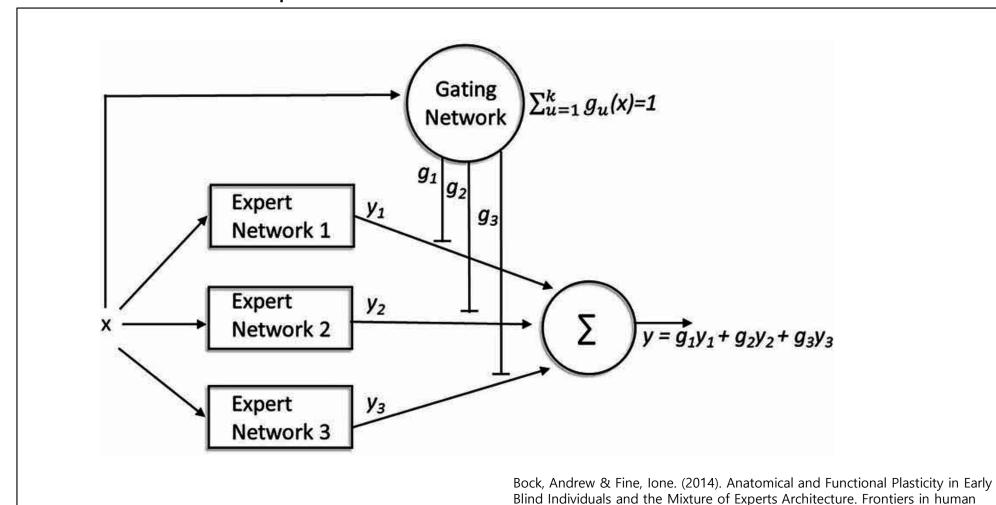
Variational Autoencoders for Collaborative Filtering. In Proceedings of the 2018 World Wide Web Conference (Lyon, France) (WWW '18)

Preliminary



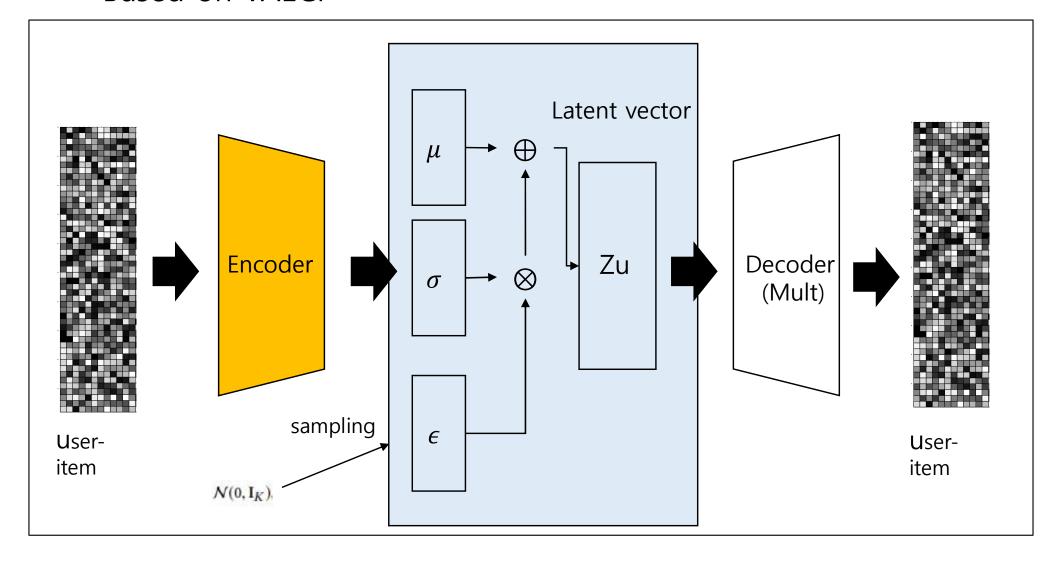
Preliminary

Variational Autoencoder for CF



Preliminary

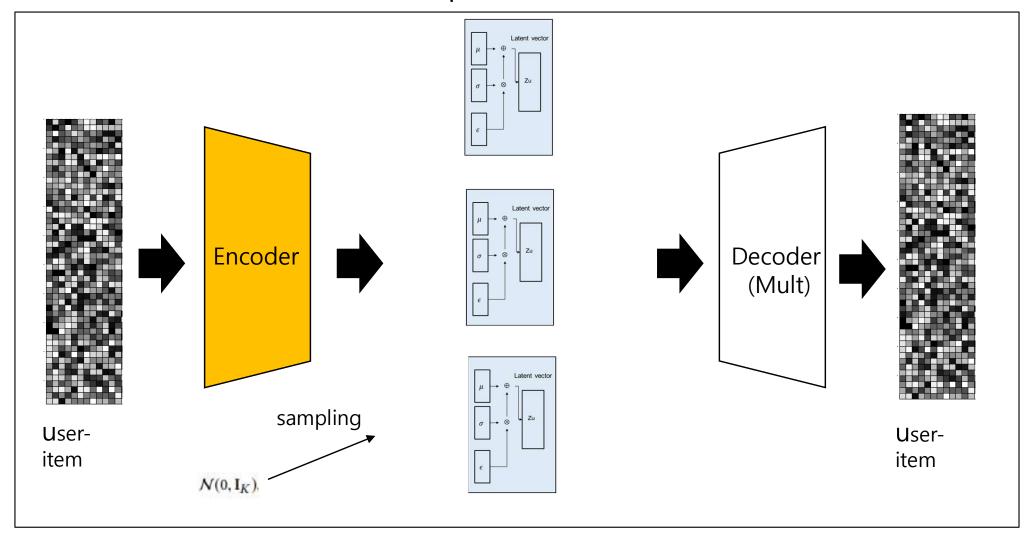
Mixture-of-Experts (MoE)



neuroscience. 8. 971. 10.3389/fnhum.2014.00971.

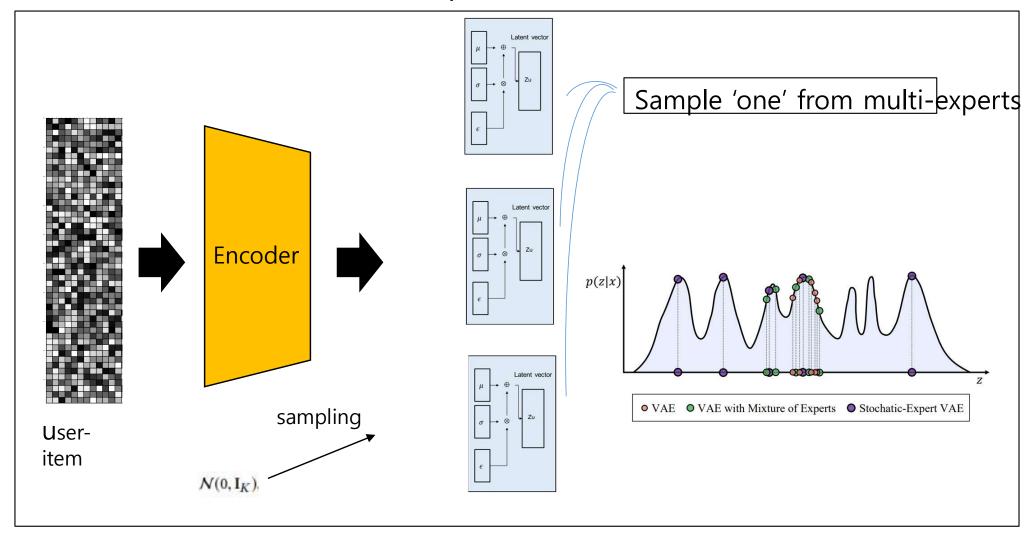
SE-VAE motivation

Based on VAECF

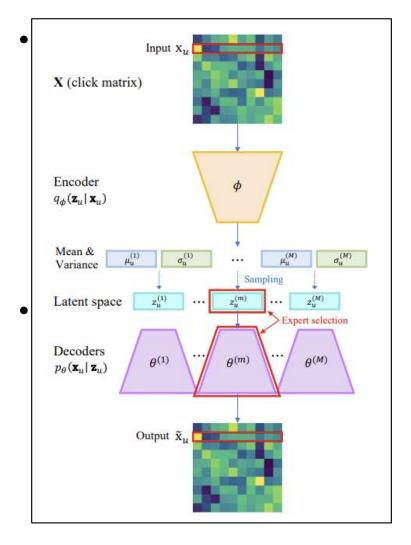


SE-VAE motivation

Extend VAECF to Multi-Experts



SE-VAE motivation


Extend VAECF to Multi-Experts

SE-VAE Generative Process


```
Require: \mathbf{X} \in \mathbb{N}^{U \times I}

Ensure: \phi, \theta = \{\theta^{(1)}, ..., \theta^{(M)}\}

Initialize \theta, \phi

while not converged do

Obtain batch of users

for user u in a batch do

Sample \mathbf{z}_u and \mathbf{w}_u using the RT

Compute gradient of \mathcal{L} w.r.t. \theta, \phi with \mathbf{z}_u and \mathbf{w}_u

end for

Take average of gradients from the batch

Update \theta and \phi with SGD

end while
```

probability of expert (m) being selected for user $\boldsymbol{\iota}$

$$\mathcal{L}(\mathbf{x}_{u}; \theta, \phi) = \sum_{m=1}^{M} \mathbb{E}_{q_{\phi}(\mathbf{z}_{u} \mid \mathbf{x}_{u})}[q_{\text{cat}}(\mathbf{e}_{u, m} = 1) \log p_{\theta_{m}}(\mathbf{x}_{u} \mid \mathbf{z}_{u}^{(m)})] - \text{KL}(q_{\phi}(\mathbf{z}_{u} \mid \mathbf{x}_{u}) || p(\mathbf{z}_{u})) - \text{KL}(q_{\phi}(\mathbf{w}_{u} \mid \mathbf{x}_{u}) || p(\mathbf{w}_{u}))$$

fully factorized Gaussian distribution which is used in Gumbe/-Softmax as input logits

Experimental Setup
 Datasets

MovieLens 20M
 136,677 users
 20,108 items
 On average, a user has clicked 73 items

Netflix

435,435 users
17,769 items
On average, a user has clicked 122 items

Evaluation Metrics

Recall@R
 proportion of relevant
 (clicked) items predicted
 in the top R items

NDCG@R
 emphasizes the importance
 of higher ranking
 than lower ones

Mul-VAE vs Mult-VAE with SE

Apply Stochastic Expert on VAECF (Mult-VAE)

Model	M	lovieLens20M	I	Netflix				
	NDCG@100	Recall@50	Recall@20	NDCG@100	Recall@50	Recall@20		
Mult-VAE	0.42700	0.53524	0.39569	0.38711	0.44427	0.35255		
Mult-VAE (SE)	0.43057	0.53688	0.40010	0.38789	0.44512	0.35332		

Follow the same settings, hyper parameters in VAECF

Model	M	lovieLens20M	Netflix			
	NDCG@100	Recall@50	Recall@20	NDCG@100	Recall@50	Recall@20
WMF [7]	0.386	0.498	0.360	0.351	0.404	0.316
SLIM [17]	0.401	0.495	0.370	0.379	0.428	0.347
CDAE [24]	0.418	0.523	0.391	0.376	0.428	0.343
Mult-VAE [14]	0.426	0.537	0.395	0.386	0.444	0.351
VAEGAN (AVB+D+C) [25]	0.438	0.541	0.407	0.396	0.447	0.363
EASE [21]	0.420	0.521	0.319	0.393	0.445	0.362
RaCT [15]	0.434	0.543	0.403	0.392	0.450	0.357
RecVAE [20]	0.442	0.553	0.414	0.394	0.452	0.361
H+Vamp (Gated) [9]	0.445	0.551	0.413	0.408	0.462	0.376

Model	M	lovieLens20M	[
	NDCG@100	Recall@50	Recall@20	NDCG@100	Recall@50	Recall@20
Mult-VAE	0.42700	0.53524	0.39569	0.38711	0.44427	0.35255
Mult-VAE (SE)	0.43057	0.53688	0.40010	0.38789	0.44512	0.35332
H+Vamp (Gated)	0.44522	0.55109	0.41308	0.40861	0.46252	0.37678
H+Vamp (Gated, SE)	0.44718	0.55551	0.41787	0.40907	0.46312	0.37713

Model	M	MovieLens20M				Netflix			
	NDCG@100	Recall@50	Recall@20	NDCG@100	Recall@50	Recall@20			
WMF [7]	0.386	0.498	0.360	0.351	0.404	0.316			
SLIM [17]	0.401	0.495	0.370	0.379	0.428	0.347			
CDAE [24]	0.418	0.523	0.391	0.376	0.428	0.343			
Mult-VAE [14]	0.426	0.537	0.395	0.386	0.444	0.351			
VAEGAN (AVB+D+C) [25]	0.438	0.541	0.407	0.396	0.447	0.363			
EASE [21]	0.420	0.521	0.319	0.393	0.445	0.362			
RaCT [15]	0.434	0.543	0.403	0.392	0.450	0.357			
RecVAE [20]	0.442	0.553	0.414	0.394	0.452	0.361			
H+Vamp (Gated) [9]	0.445	0.551	0.413	0.408	0.462	0.376			
SE-VAE (H+Vamp, Gated)	0.447	0.556	0.418	0.409	0.463	0.377			

All the benchmark models use the same training set/ val set/ test set

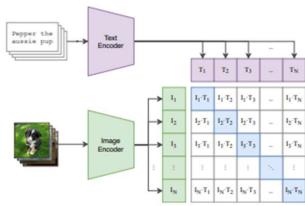
MEME: Multi-Encoder Multi-Expert Framework with Data Augmentation for Video Retrieval

Seong-Min Kang

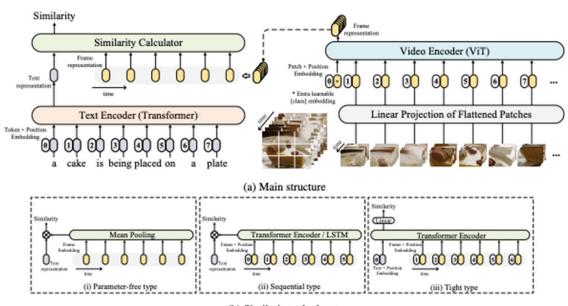
Yoon-Sik Cho

⊠ kang7734@cau.ac.kr

https://github.com/kang7734/MEME_



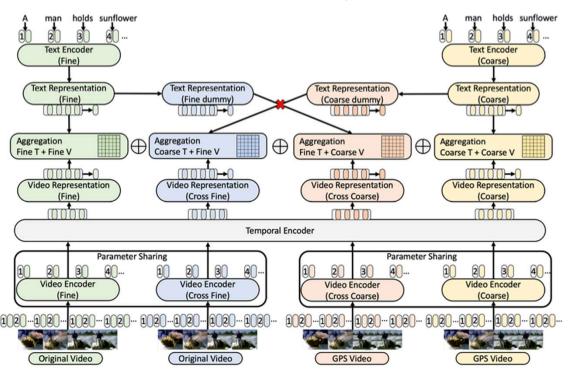
Motivation


(1) Contrastive pre-training

CLIP[1]

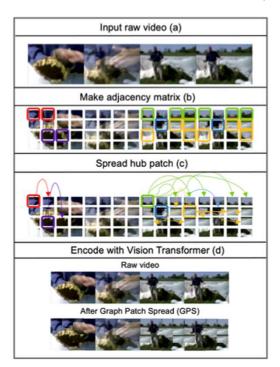
^[1] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In International Conference on Machine Learning, pages 8748–8763. PMLR, 2021.

Motivation


(b) Similarity calculator

CLIP4Clip

Method


Multi-Encoder Multi-Expert

Method

GPS(Graph Patch Spreading) Algorithm

Algorithm 1 GPS: Graph Patch Spread

```
Require: Video V = (v_1, v_2, ..., v_n)
                                               ▶ n is the number of frames
Frame v_i = (x_p^1, x_p^2, ..., x_p^N)

Ensure: output = []
                                              \triangleright N is the number of patches
 1: v_i = v_i/v_i.norm()
 2: S = V \cdot V^{\mathsf{T}}
                                    \triangleright S is similarity matrix of each token
 3: S[S \ge k] = 1
                                                  \triangleright k is similarity threshold
 4: S[S < k] = 0
                                              ▶ Now S is Adjacency matrix
 5: for S_i in S do
         while sum(S_j) = len(S_j) do
              C = \text{nonzero count}(S_i)
              h = \operatorname{argmax}(C, dim = 0) \rightarrow h is the index of hub patch
              L = \operatorname{arange}(\operatorname{len}(S_i[h])) + 1
              L = S_i[h] * L > L is linked patches idx with hub patch
              S_i^{\top}[h,L]=1
                                                          ▶ Spread hub patch
 11:
         end while
 12:
         v_i = v_i \cdot S_i^{\mathsf{T}}
 13:
         output.append(v_i)
 14:
 15: end for
16: V = stack(output)
```


Experiments

Methods		Text-to-Vid	eo Retrieval			Video-to-Te	xt Retrieval	
Methods	R@1↑	R@5↑	R@10↑	MeanR↓	R@1↑	R@5↑	R@10↑	MeanR↓
TT-CE+ [8]	29.6	61.6	74.2	-	32.1	62.7	75.0	-
Frozen [9]	31.0	59.5	70.5	-	-	-	-	-
CLIP [1]	31.2	53.7	64.2		27.2	51.7	62.6	-
*CLIP4Clip [2](MeanP)	43.9	70.9	81.1	15.9	42.6	70.9	81.1	12.0
CLIP2Video [11]	45.6	72.6	81.7	14.6	43.5	72.3	82.1	10.2
CAMoE [16]	44.6	71.6	82.1	15.1	45.1	72.4	83.1	10.0
QB-Norm [39]	47.2	73.0	83.0	-	-	-	-	-
CenterCLIP [17]	44.2	71.6	82.1	15.1	42.8	71.7	82.2	10.9
CLIP2TV [13]	46.1	72.5	82.9	15.2	43.9	73.0	82.8	11.1
*CLIP4Clip(seqTransf) [2]	43.1	72.7	81.5	15.7	43.4	70.0	80.3	11.8
*CLIP4Clip(seqTransf+MEME)	45.0(+1.9)	72.3(-0.4)	82.2(+0.7)	13.7(-2.0)	42.5(-0.9)	71.0(+1.0)	81.4(+1.1)	10.3(-1.5)
*ts2net [18]	46.4	74.7	82.8	14.0	45.6	73.1	83.4	9.6
*ts2net(+MEME)	46.6(+0.2)	73.1(-1.6)	82.9(+0.1)	12.6(-1.4)	45.8(+0.2)	71.8(-1.3)	83.7(+0.3)	8.4(-1.2)
*ts2net(DSL) [18]	50.5	76.5	85.9	12.1	45.6	73.1	83.4	9.6
*ts2net(DSL+MEME)	51.6(+1.1)	76.6(+0.1)	85.7(-0.2)	11.8(-0.3)	45.8(+0.2)	71.8(-1.3)	83.7(+0.3)	8.4(-1.2)
*X-CLIP [5]	46.8	73.8	83.1	13.1	47.3	73.6	81.8	9.6
*X-CLIP(+MEME)	49.0(+2.2)	73.5(-0.3)	82.0(-1.1)	13.0(-0.1)	47.7(+0.4)	74.0(+0.4)	83.3(+1.5)	9.4(-0.2)

Table 1: Results on MSR-VTT [40], * denotes that the results are reproduced by our experimentation with the original code.

Methods		Text-to-Vide	eo Retrieval		Video-to-Text Retrieval				
Methods	R@1↑	R@5↑	R@10↑	MeanR↓	R@1↑	R@5↑	R@10↑	MeanR↓	
TT-CE+ [8]	17.2	36.5	46.3	-	17.5	36.0	45.0	-	
Frozen [9]	15.0	30.8	39.8	-	-	-	-	-	
CLIP [1]	15.1	28.3	35.8	132	7.5	18.4	25.1	151	
*CLIP4Clip [2](MeanP)	20.6	39.8	47.7	60.6	20.0	38.4	48.4	55.4	
CAMoE [16]	22.5	42.6	50.9	56.5	-	1.6	-	-	
QB-Norm [39]	17.8	37.7	47.6	-		1.0	-	-	
CenterCLIP [17]	21.9	41.1	50.7	57.2	21.1	41.2	50.2	48.7	
*CLIP4Clip(seqTransf) [2]	23.0	40.9	48.4	58.8	20.4	39.6	49.3	54.2	
*CLIP4Clip(seqTransf+MEME)	23.4(+0.4)	42.0(+1.1)	49.3(+0.9)	57.3(-1.5)	21.1(+0.7)	40.4(+0.8)	49.2(-0.1)	53.1(-1.1)	
*ts2net [18]	20.4	40.1	47.5	68.3	20.5	37.3	46.4	62.4	
*ts2net(+MEME)	21.4(+1.0)	40.3(+0.2)	46.6(-0.9)	67.5(-0.8)	20.8(+0.3)	$37.3(\pm0.0)$	46.6(+0.2)	63.7(+1.3)	
*ts2net(DSL) [18]	21.9	40.1	48.7	64.5	20.5	37.3	46.4	62.4	
*ts2net(DSL+MEME)	22.2(+0.3)	41.1(+1.0)	48.9(+0.2)	65.3(+0.8)	21.1(+0.6)	$37.3(\pm0.0)$	46.8(+0.4)	65.2(+2.8)	
*X-CLIP [5]	23.2	41.0	51.1	55.8	22.4	40.4	48.7	51.7	
*X-CLIP(+MEME)	24.0(+0.8)	41.7(+0.7)	51.4(+0.3)	53.5(-2.3)	22.5(+0.1)	42.3(+1.9)	50.3(+1.6)	49.3(-2.4)	

Table 3: Results on LSMDC [42], * denotes that the results are reproduced by our experimentation with the original code.

Experiments

Methods		Text-to-Vid	eo Retrieval			Video-to-Te	xt Retrieval	
Methods	R@1↑	R@5↑	R@10†	MeanR↓	R@1↑	R@5↑	R@10↑	MeanR↓
TT-CE+ [8]	23.5	56.9	71.3	. 	27.1	55.3	67.0	-
Frozen [9]	33.7	64.7	76.3	-		-	-	-
CLIP [1]	37.0	64.1	73.8	-	59.9	85.2	90.7	-
*CLIP4Clip [2](MeanP)	46.1	76.0	84.6	10.0	56.1	78.9	83.9	8.0
CLIP2Video [11]	47.0	76.8	85.9	9.6	58.7	85.6	91.6	4.3
CAMoE [16]	46.9	76.1	85.5	9.8	-	-	-	-
QB-Norm [39]	47.6	77.6	86.1	-	-	-	-	-
CenterCLIP [17]	47.6	77.5	86.0	9.8	54.2	78.4	84.9	7.6
CLIP2TV [13]	46.1	72.5	82.9	15.2	43.9	73.0	82.8	11.1
*CLIP4Clip(seqTransf) [2]	45.7	75.6	84.0	10.6	49.9	70.8	76.8	15.2
*CLIP4Clip(seqTransf+MEME)	45.8(+0.1)	75.4(-0.2)	84.2(+0.2)	10.3(-0.3)	59.1(+9.2)	81.7(+10.9)	87.8(+11.0)	6.8(-8.4)
*ts2net [18]	45.1	75.5	84.5	10.2	56.4	79.1	85.2	9.4
*ts2net(+MEME)	45.4(+0.3)	75.9(+0.4)	84.7(+0.2)	$10.2(\pm0.0)$	58.1(+1.7)	84.6(+5.5)	89.0(+3.8)	6.0(-3.4)
*ts2net(DSL) [18]	47.6	78.0	86.0	10.1	56.4	79.1	85.2	9.4
*ts2net(DSL+MEME)	47.7(+0.1)	77.9(-0.1)	85.9(-0.1)	$10.1(\pm 0.0)$	57.0(+0.6)	79.5(+0.4)	85.3(+0.1)	8.9(+0.5)
*X-CLIP [5]	46.4	76.4	84.6	9.8	53.9	79.0	85.3	7.1
*X-CLIP(+MEME)	46.6(+0.2)	76.5(+0.1)	85.0(+0.4)	10.0(+0.2)	63.8(+9.9)	87.8(+8.8)	92.5(+7.2)	4.2(-2.9)

Table 2: Results on MSVD [41], * denotes that the results are reproduced by our experimentation with the original code.

Thank you

yoonsik@cau.ac.kr