

# ETHOLOGICALLY INSPIRED ROBOT BEHAVIOUR

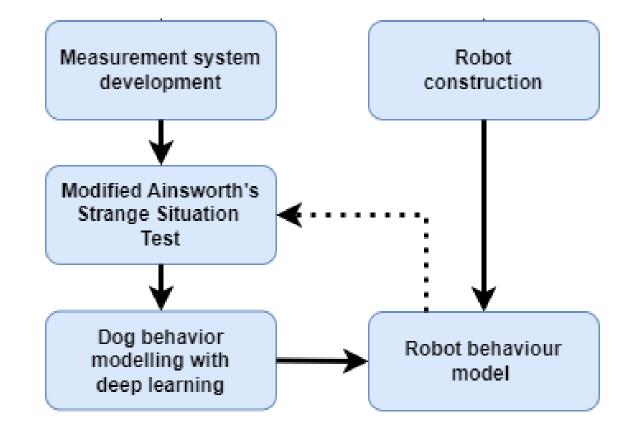
Balázs Nagy



ELTE IK DEPARTMENT OF ARTIFICIAL INTELLIGENCE



### Motivation


- Robots outside the industrial sector
- Social robotics
- Human-Robot interactions
- Behaviour as a way of communication
- Robots can be treated as a new spices
- Ethorobotics as a new field of science



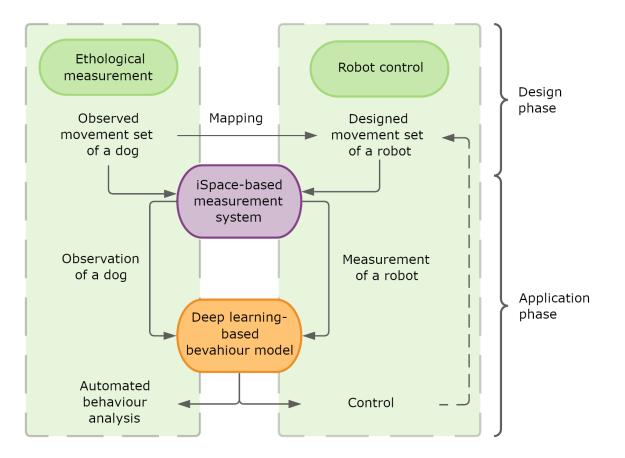


## Ethorobotics

- Leading questions:
  - How can we measure animals quantitatively?
  - How can we use deep learning to learn animal behaviour pattern?
  - How can we implement animal like behaviour on an autonomous robot?






## Behaviour Transfer System

- Define an ethological measurement
  - Ainsworth's strange situation test
- Develop a measurement system
  - MoCap (iSpace)
  - Collect data (quality and quantity)
- Design and build a robot
  - Mecanumbot

FACULTY OF

INFORMATICS

- Use deep learning to process the data and learn behaviour patterns
- Implement the learned behaviour patterns on the robot



#### Ainsworth test

- Ainswort's strange situation test (Human Human)
  - The strange situation is a standardized procedure devised by Mary Ainsworth in the 1970s to observe attachment security in children within the context of caregiver relationships.
- Modified Ainsworth test (Human Dog)
  - The ethologists of ELTE redefined the procedure to observe attachment between a dog and its owner.
- Projected Ainsworth test (Human Robot)
  - My goal was to extend the procedure to examine behaviour between a robot and a human



## Ainsworth's test with a dog

- #1: Acclimatisation
- #2: Introduction to STR
- #3: OWN leaves, first separation
- #4: First reunion with OWN
- #5: Dog alone, second separation
- #6: Separation continuation with STR
- #7: 2nd reunion with OWN
- Instructions:
  - First half of every scenario is passive, the second is active
  - Use the dominant hand with the marker set

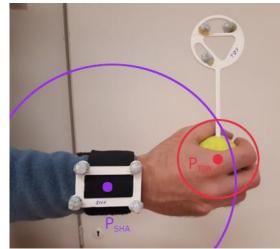
| Episode | Subject            | Duration |  |
|---------|--------------------|----------|--|
| 1       | DOG, OWN, TOY      | 2 min    |  |
| 2       | DOG, OWN, STR, TOY | 2 min    |  |
| 3       | DOG, STR, TOY      | 2 min    |  |
| 4       | DOG, OWN, TOY      | 2 min    |  |
| 5       | DOG, TOY           | 2 min    |  |
| 6       | DOG, STR, TOY      | 2 min    |  |
| 7       | DOG, OWN, TOY      | 2 min    |  |
|         | DOG – dog          |          |  |

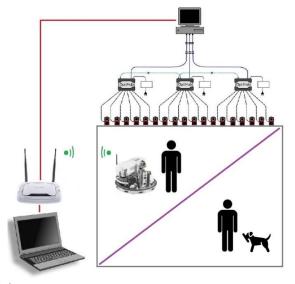
| DOG | – dog                                   |
|-----|-----------------------------------------|
| OWN | <ul> <li>owner of the dog</li> </ul>    |
| STR | <ul> <li>stranger to the dog</li> </ul> |
| TOY | - toy                                   |

# Dog playing with Owner (#2)






### Dog with Stranger (#3)






## MoCap

- Measurement system
  - Contains 18 infra cameras
  - Capable of tracking the position and orientation of marker sets made from infra reflective markers
- Intelligent space
  - Automated measurement
  - Sound controlling the participants



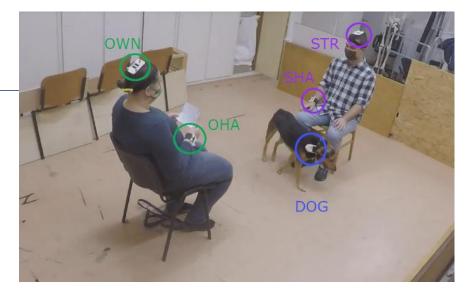


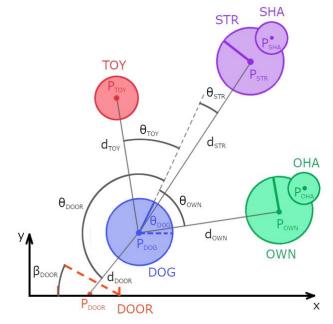




# Modell and Tracking

- 3D printed marker sets
- Infra reflective markers
- At least 3 markers for a set
  - Position tracking


FACULTY OF


**INFORMATICS** 

-

Orientation tracking









#### Results

- Examined behaviours of dog:
  - Tail wagging
  - Contact seeking
  - Attention

FACULTY OF

INFORMATICS

- Neural networks
  - 8-10 hidden layers
  - 10-100 neurons in each layer

| Pattern   | Train | Valid | Test |
|-----------|-------|-------|------|
| Contact   | 99%   | 92%   | 88%  |
| Tail wag  | 94%   | 88%   | 82%  |
| Attention | 96%   | 74%   | 88%  |




FIGURE 6. Result of attention prediction. (Dog looking at 0: non specified location, 1: owner, 2: stranger, 3: door, 4: toy)

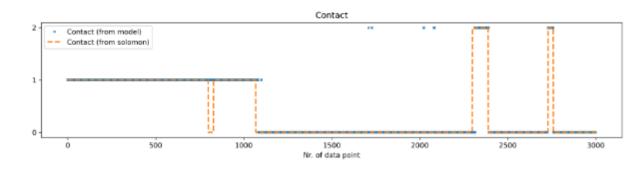



FIGURE 7. Result of contact prediction. (0: No contact, 1: Contact with owner, 2: Contact with stranger)

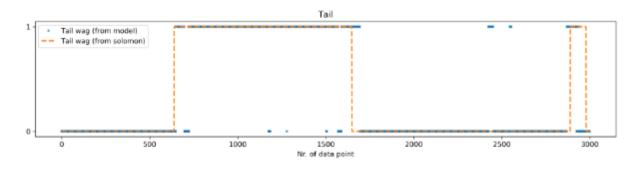
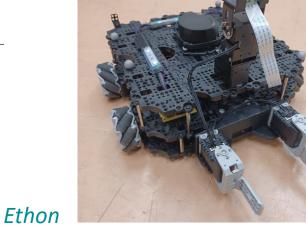



FIGURE 8. Result of tail wag prediction. (0: No tail wag, 1: Tail wag)

## Ethorobots

• Developments

FACULTY OF


ELTE

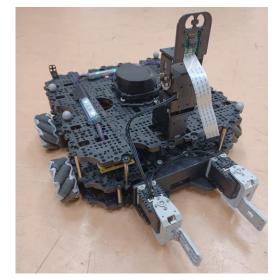
- SLAM
- Camera moving mechanism
- MARG sensor mounting and sensor fusion
- Microphone mounting

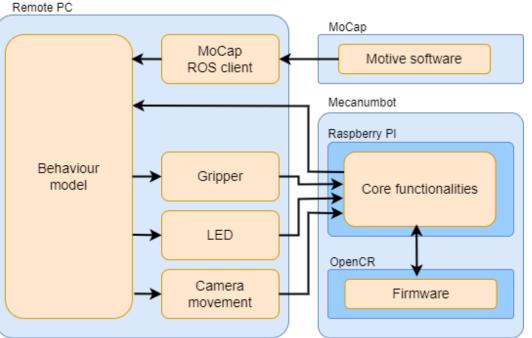




1111111



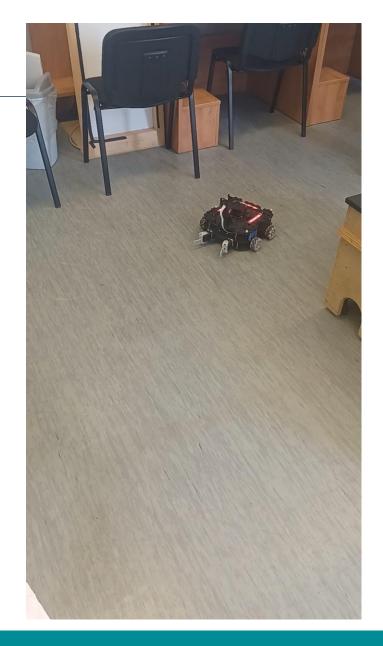





## Mecanumbot

- External intelligence Remote PC
  - Deep learning-based behaviour model
  - High level robot control
  - Data collection from observer
- Robot Mecanumbot
  - Motor control OpenCR
  - Core functionalities Raspberry PI
  - Dog like features
- External observer MoCap
  - Marker based position tracking
  - Environment monitoring








## Mecanumbot – Playing fetch

- Search the toy
  - Based on colour discrimination
  - Red light
- Find human
  - Using Yolo neural network to identify humans
  - Blue light
- Bring the toy to the human
  - Green light







## Thank you for your attention!