Data-driven Adaptive Regularization for Imaging Problems

Byung-Woo Hong

Department of Artificial Intelligence, Chung-Ang University, Seoul, Korea

ELTE, INFORMATIKAI KAR Budapest, Hungary, 2023.07.17

Introduction

$$\min_{u} \lambda \mathcal{D}(u) + (1 - \lambda) \mathcal{R}(u)$$
(1)

- $u: \Omega \to \mathbb{R}^N$ is an unknown function
- $\mathcal{D}: u \to \mathbb{R}$ is a data fidelity function
- $\mathcal{R}: u \to \mathbb{R}$ is a regularization function
- $\lambda \in (0,1) \subset \mathbb{R}$ is a balancing parameter between $\mathcal D$ and $\mathcal R$

Conventional Variational Problem - Static Balancing

$$\min_{u} \lambda \mathcal{D}(u) + (1 - \lambda) \mathcal{R}(u)$$
(2)

$$\mathcal{D}(u) = \sum_{x \in \Omega} \rho(u(x)) \tag{3}$$
$$\mathcal{R}(u) = \sum_{x \in \Omega} \gamma(u(x)) \tag{4}$$

- $\rho: \Omega \to \mathbb{R}$ measures data fidelity
- $\gamma: \Omega \to \mathbb{R}$ measures regularity
- λ is constant in both space (domain) and time (optimization)

Illustrative Motivation in Regression Problem

Illustrative Motivation in Image Segmentation

Illustrative Motivation in Motion Estimation

Illustrative Motivation in Motion Estimation

Derivation of Weight for Regularization in Denoising Problem

Additive Gaussian Noise Model

$$f = u + \eta, \quad \eta(x) \sim \mathcal{N}(0, \sigma^2) \tag{5}$$

Bayesian Formulation

$$p(u|f) \propto p(f|u) \, p(u) \tag{6}$$

Maximum A Posteriori estimation

$$u^* = \arg\max_{u} p(u|f) = \arg\max_{u} p(f|u) p(u)$$
(7)

$$= \arg\max_{u} \log p(f|u) + \log p(u)$$
(8)

$$= \arg\min_{u} -\log p(f|u) - \log p(u)$$
(9)

Derivation of Weight for Regularization in Denoising Problem

Likelihood and Prior probabilities

$$p(f(x)|u(x)) \propto \exp\left(-\frac{1}{2\sigma^2} \int_{\Omega} (f(x) - u(x))^2 \,\mathrm{d}x\right)$$
(10)
$$p(u(x)) \propto \exp\left(-\frac{1}{2\mu^2} \int_{\Omega} |\nabla u(x)|^2 \,\mathrm{d}x\right)$$
(11)

Energy Functional

$$E(u) = \frac{1}{2\sigma^2} \int_{\Omega} (f(x) - u(x))^2 \, dx + \frac{1}{2\mu^2} \int_{\Omega} |\nabla u(x)|^2 \, dx \quad (12)$$
$$= \int_{\Omega} (f(x) - u(x))^2 \, dx + \left[\frac{\sigma^2}{\mu^2}\right] \int_{\Omega} |\nabla u(x)|^2 \, dx \quad (13)$$

Illustrative Motivation in Image Segmentation

(a) input image

(b) segmentation

(d) residual variance

Regularization via Interaction between Model and Data

- Prior works generally consider static image features such as edges only from the data in determining regularization
- It is desired to consider both the current state of the observation and the underlying model for the regularization scheme
- We propose an adaptive regularization scheme that considers both spatially and temporarily varying statistics

Adaptive Regularization

$$\min_{u} \mathcal{D}_{\lambda}(u) + \mathcal{R}_{\lambda}(u) \tag{14}$$

$$\mathcal{D}_{\lambda}(u) = \sum_{x \in \Omega} \lambda(u(x)) \,\rho(u(x)) \tag{15}$$

$$\mathcal{R}_{\lambda}(u) = \sum_{x \in \Omega} (1 - \lambda(u(x))) \gamma(u(x))$$
(16)

- $\rho:\Omega\to\mathbb{R}$ measures data fidelity
- $\gamma:\Omega\to\mathbb{R}$ measures regularity
- $\lambda:\Omega\to\mathbb{R}$ modulates ρ and γ

$$u^* = \arg\max_u p(u|f) \propto \ell(u) q(u)$$
(17)

$$\ell(u) = p(f|u) \tag{18}$$

$$q(u) = p(u) \tag{19}$$

- *u* is a solution for the object of interest
- f is the observation
- ℓ is a likelihood function
- q is a prior function

/

$$u^* = \arg \max_{u} \ell(u)^{\lambda(u)} q^{(1-\lambda(u))}(u)$$
(20)

$$\lambda(u(x)) \propto \ell(u(x))$$
(21)

• λ is determined by the annealing schedule that depends on the solution *u pointwise*

$$u^{*} = \arg \max_{u} \ell(u)^{\lambda(u)} q^{(1-\lambda(u))}(u)$$
(22)
=
$$\arg \min_{u} \int_{\Omega} e^{-\frac{\rho(u)}{\beta}} \rho(u) \, \mathrm{d}x + \int_{\Omega} \left(1 - e^{-\frac{\rho(u)}{\beta}}\right) \gamma(u) \, \mathrm{d}x,$$
(23)

•
$$\ell(u(x)) = e^{-\rho(u(x))}$$

•
$$q(u(x)) = e^{-\gamma(u(x))}$$

• $\lambda(u(x)) = e^{-\frac{\rho(u(x))}{\beta}}$ where $\beta > 0$ is a control parameter for the variance of $\rho(u)$

Energy Functional with Adaptive Regularization

$$\mathcal{E}(u;\beta) = \int_{\Omega} \lambda(u(x)) \rho(u(x)) + (1 - \lambda(u(x))) \gamma(u(x)) \, \mathrm{d}x \quad (24)$$
$$\lambda(u(x)) = \exp\left(-\frac{\rho(u(x))}{\beta}\right) \quad (25)$$

$$ho(u(x))$$
 is small small residual

 $\lambda(u(x))$ is large

more rely on

the data fidelity

Sparsity Constraint on Weighting Function λ

$$\nu(x) = \exp\left(-\frac{\rho(u(x))}{\beta}\right)$$
(26)

$$\lambda(x) = \arg\min_{\lambda} \frac{1}{2} \|\nu(x) - \lambda\|_2^2 + \alpha \|\lambda\|_1$$
(27)

- β > 0 is a control parameter related to the variation of the residual ρ(u)
- 0 < α < 1 is a constant parameter to control the degree of sparsity in the weighting function λ
- λ is obtained by the solution of the Lasso problem

Application to Imaging Problems

Huber-Huber model

Energy Functional

$$\mathcal{E}(u) = \int_{\Omega} \lambda(x) \,\rho(u(x)) \,\mathrm{d}x + \int_{\Omega} (1 - \lambda(x)) \,\gamma(u(x)) \,\mathrm{d}x \qquad (28)$$

$$\rho(u(x)) = \phi_{\mu}(u(x); f(x))$$

$$\gamma(u(x)) = \phi_{\eta}(\nabla u(x))$$
(29)
(30)

Huber function

$$\phi_{\mu}(x) = \begin{cases} \frac{1}{2\mu} x^2 & : |x| \le \mu, \\ |x| - \frac{\mu}{2} & : |x| > \mu \end{cases}$$
(31)

where $\boldsymbol{\mu}$ is a threshold parameter

Image Segmentation

Data Fidelity

$$\mathcal{D}_{\lambda_i}(u_i, c_i) = \int_{\Omega} \lambda_i(x) \,\rho(u_i(x), c_i) \,\mathrm{d}x \tag{32}$$

$$\rho(u_i(x), c_i) = \phi_{\mu}(f(x) - c_i) u_i(x)$$
(33)

Regularization

$$\mathcal{R}_{\lambda_i}(u_i) = \int_{\Omega} (1 - \lambda_i(x)) \gamma(u_i(x)) \, \mathrm{d}x \qquad (34)$$
$$\gamma(u_i(x)) = \phi_{\eta}(\nabla u_i(x)) \qquad (35)$$

Weighting Function

$$\lambda_i(x) = \exp\left(-\frac{\rho(u_i(x), c_i)}{\beta}\right) : Lasso$$
 (36)

Optical Flow

Data Fidelity

$$\mathcal{D}_{\lambda}(u) = \int_{\Omega} \lambda(x) \rho(u(x)) \,\mathrm{d}x \tag{37}$$
$$\rho(u) = \phi_{\mu}(f_t(x) - \nabla f_1(x + u_0(x)) \cdot (u(x) - u_0(x))) \tag{38}$$

Regularization

$$\mathcal{R}_{\lambda}(u) = \int_{\Omega} (1 - \lambda(x)) \gamma(u(x)) \,\mathrm{d}x \tag{39}$$
$$\gamma(u(x)) = \phi_{\eta}(\nabla u_1(x)) + \phi_{\eta}(\nabla u_2(x)) \tag{40}$$

Weighting Function

$$\lambda(x) = \exp\left(-\frac{\rho(u(x))}{\beta}\right) : Lasso$$
(41)

Denoising

Data Fidelity

$$\mathcal{D}_{\lambda}(u) = \int_{\Omega} \lambda(x) \,\rho(u(x)) \,\mathrm{d}x \tag{42}$$

$$\rho(u(x)) = \phi_{\mu}(f(x) - u(x))$$
(43)

Regularization

$$\mathcal{R}_{\lambda}(u) = \int_{\Omega} (1 - \lambda(x)) \gamma(u(x)) \, \mathrm{d}x \qquad (44)$$
$$\gamma(u(x)) = \phi_{\eta}(\nabla u(x)) \qquad (45)$$

Weighting Function

$$\lambda(x) = \exp\left(-\frac{\rho(u(x))}{\beta}\right) : Lasso$$
(46)

Energy Optimization

$$\begin{split} &\int_{\Omega} \lambda(x) \,\rho(u(x)) \,\mathrm{d}x + \int_{\Omega} (1 - \lambda(x)) \,\gamma(\boxed{u(x)}) \,\mathrm{d}x \\ &\int_{\Omega} \lambda(x) \,\rho(u(x)) \,\mathrm{d}x + \int_{\Omega} (1 - \lambda(x)) \,\gamma(\boxed{v(x)}) \,\mathrm{d}x, \text{ subject to } \underbrace{u = v}_{2} \\ &\int_{\Omega} \lambda(x) \,\rho(u(x)) \,\mathrm{d}x + \int_{\Omega} (1 - \lambda(x)) \,\gamma(\boxed{v(x)}) \,\mathrm{d}x + \underbrace{\frac{\theta}{2} \|u - v + w\|_{2}^{2}}_{2} \end{split}$$

- We initially apply the variable splitting with a new variable v such that u = v
- We add a quadratic constraint leading to the unconstrained augmented Lagrangian

Moreau-Yosida regularization of a non-smooth function | · |

$$\phi_{\mu}(x) = \inf_{r} \left\{ |r| + \frac{1}{2\mu} (x - r)^{2} \right\} = \operatorname{prox}_{\mu g}(x)$$
(47)

- r is an auxiliary variable to be minimized
- prox_{µg}(x) is the proximal operator associated with a convex function g(x) = ||x||₁
- The solution of the above proximal operator prox_{µg}(x) can be obtained by the soft shrinkage operator T(x|µ):

$$\mathcal{T}(x \mid \mu) = \begin{cases} x - \mu & : x > \mu \\ 0 & : \|x\|_1 \le \mu \\ x + \mu & : x < -\mu \end{cases}$$
(48)

Optimization Algorithm via ADMM

$$\begin{aligned} r^{k+1} &\coloneqq \operatorname{argmin}_{r} \rho(u^{k}, r) \\ z^{k+1} &\coloneqq \operatorname{argmin}_{z} \gamma(v^{k}, z) \\ u^{k+1} &\coloneqq \operatorname{argmin}_{u} \int_{\Omega} \lambda^{k+1} \rho(u, r^{k+1}) \, \mathrm{d}x + \frac{\theta}{2} \|u - v^{k+1} + w^{k}\|_{2}^{2} \\ v^{k+1} &\coloneqq \operatorname{argmin}_{v} \int_{\Omega} (1 - \lambda^{k+1}) \, \gamma(v, z^{k+1}) \, \mathrm{d}x + \frac{\theta}{2} \|u^{k} - v + w^{k}\|_{2}^{2} \\ w^{k+1} &\coloneqq w^{k} + u^{k+1} - v^{k+1} \\ v^{k+1} &\coloneqq \exp\left(-\frac{\rho(u^{k+1}, r^{k+1})}{\beta}\right) \\ \lambda^{k+1} &\coloneqq \operatorname{argmin}_{\lambda} \frac{1}{2} \|v^{k+1} - \lambda\|_{2}^{2} + \alpha \|\lambda\|_{1} \end{aligned}$$

Experimental Results

Comparison of Image Model - Bipartitioning

- Images are taken from Berkeley segmentation dataset
- Bi-partitioning segmentation is performed based on TV-L₁ (green), TV-L₂ (blue), our H² (red) models
- F-measure (left) and error (right) are computed over iteration

Adaptive Regularization - Segmentation

• Illustrative comparison of constant and adaptive regularization

Experimental Results - Segmentation

(a) Input (b) FL^1 (c) TV^2 (d) VTV^3 (e) PC^4 (f) Ours

¹sundaramoorthi2014fast.

- ²zach2008fast.
- ³lellmann:continuous:siam:2011.
- ⁴chambolle2012convex.

Quantitative Evaluation (Average Angular Error) - Motion

⁷werlberger2009anisotropic.

Deep Learning Application - Depth Prediction

Deep Learning Application - Depth Prediction (KITTI)

Adaptive Regularization in Deep Learning framework

- Training data : $\{(x_i, y_i)\}_{i=1}^n, x_i \in X, y_i \in Y$
- Prediction function : $h_w \colon X \to Y$
- Model parameters : $w = (w_1, w_2, \cdots, w_m) \in \mathbb{R}^m$

$$\mathcal{L}(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w) + \lambda \gamma(w)$$
(49)

- f_i(w) is a data fidelity incurred by a set of model parameters
 w for a sample pair (x_i, y_i)
- $f_i(w)$ measures discrepancy between $h_w(x_i)$ and y_i
- $\gamma(w)$ is a regularization on model parameters w

Adaptive Regularization in Deep Learning framework

Static Regularization (Weight Decay)

$$\mathcal{L}(w) = \rho(w) + \frac{\lambda}{2} \|w\|_2^2, \qquad (50)$$

Adaptive Regularization

$$\mathcal{L}(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w) + \frac{\lambda}{2} \|\theta \odot w\|_2^2, \qquad (51)$$

- $\theta = (\theta_1, \theta_2, \cdots, \theta_m) \in \mathbb{R}^m$
- $\bullet \ \odot$ denotes the Hadamard product

•
$$\theta \odot w = (\theta_1 w_1, \theta_2 w_2, \cdots, \theta_m w_m)$$

- g_j^t is the gradient of the data fidelity with respect to the parameter w_j at iteration t
- I denotes the index of the layer that includes the parameter w_i
- μ_I^t and σ_I^t denotes the mean and standard deviation of all the gradient norms for the parameters within the layer I at iteration t

Adaptive Decay Rate

$$heta_j^t = S(ilde{g}_j^t; lpha) = rac{2}{1 + \exp(-lpha \, ilde{g}_i^t)},$$

- S is a scaled signmoid function
- α determines the slope of the decay rate
- \tilde{g}_{i}^{t} is normalized to have mean 0 and standard deviation 1.
- θ_i^t ranges from 0 to 2

(54)

(1) Validation accuracy for MNIST														
	NN-2							NN-3						
	SGD	RMS	Adam	eSGD	aSGD	Ours	SGD	RMS	Adam	eSGD	aSGD	Ours		
ave	98.53	98.22	98.19	98.16	98.15	98.56	98.66	98.31	98.26	98.29	98.23	98.69		
max	98.63	98.36	98.31	98.31	98.35	98.72	98.80	98.49	98.47	98.41	98.45	98.82		
	LeNet-4							VGG-9						
	SGD	RMS	Adam	eSGD	aSGD	Ours	SGD	RMS	Adam	eSGD	aSGD	Ours		
ave	99.31	99.30	99.27	99.23	99.17	99.32	99.62	99.37	99.37	99.58	99.52	99.63		
max	99.48	99.39	99.37	99.38	99.28	99.45	99.71	99.50	99.43	99.63	99.59	99.70		

(2) Validation accuracy for Fashion-MNIST														
	NN-2							NN-3						
	SGD	RMS	Adam	eSGD	aSGD	Ours	SGD	RMS	Adam	eSGD	aSGD	Ours		
ave	89.23	88.89	88.98	87.63	89.12	89.49	89.71	89.17	89.26	88.13	89.24	89.95		
max	89.50	89.15	89.28	87.83	89.44	89.84	89.87	89.54	89.49	88.32	89.56	90.23		
	LeNet-4						VGG-9							
	SGD	RMS	Adam	eSGD	aSGD	Ours	SGD	RMS	Adam	eSGD	aSGD	Ours		
ave	90.65	90.81	90.78	89.76	90.12	90.87	93.45	91.97	92.08	93.33	93.05	93.51		
max	91 36	91 30	91.23	90 54	90.48	91 51	03 73	92 36	92.46	93 72	93 37	93.83		

(3) Validation accuracy for CIFAR-10														
	ResNet-18							ResNet-50						
	SGD	RMS	Adam	eSGD	aSGD	Ours	SGD	RMS	Adam	eSGD	aSGD	Ours		
ave	94.70	90.72	90.92	91.46	93.07	94.80	94.61	91.22	91.26	90.76	92.82	94.71		
max	94.98	91.25	91.36	91.99	93.38	95.04	95.16	91.82	91.73	91.38	93.36	95.22		
	GoogLeNet						DenseConv							
	SGD	RMS	Adam	eSGD	aSGD	Ours	SGD	RMS	Adam	eSGD	aSGD	Ours		
ave	94.91	90.48	90.62	93.00	93.39	95.17	94.72	83.17	83.80	88.05	90.27	94.91		
max	95.43	90.94	90.97	93.45	93.79	95.50	95.08	83.60	84.40	88.60	90.56	95.22		

Summary

- We have introduced an adaptive regularization scheme based on the current local data fit to the model during the iterative optimization
- We have presented classical imaging problems based on the Huber-Huber model
- We have presented an efficient optimization algorithm based on ADMM framework
- Numerical experiments have demonstrated the effectiveness and robustness of the adaptive regularization scheme