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Introduction



Composite Energy

min
u

λD(u) + (1− λ)R(u) (1)

� u : Ω → RN is an unknown function

� D : u → R is a data fidelity function

� R : u → R is a regularization function

� λ ∈ (0, 1) ⊂ R is a balancing parameter between D and R
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Conventional Variational Problem - Static Balancing

min
u

λD(u) + (1− λ)R(u) (2)

D(u) =
∑
x∈Ω

ρ(u(x)) (3)

R(u) =
∑
x∈Ω

γ(u(x)) (4)

� ρ : Ω → R measures data fidelity

� γ : Ω → R measures regularity

� λ is constant in both space (domain) and time (optimization)
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Illustrative Motivation in Regression Problem

(a) robust (b) overfitting

(c) homoscedasticity (d) heteroscedasticity
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Illustrative Motivation in Image Segmentation

noise
�

��	

(a) image (b) noisy image

(c) small regularity (d) large regularity
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Illustrative Motivation in Motion Estimation

small disparity

large disparity

@
@@R

@
@@R

(a) first image (b) second image
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Illustrative Motivation in Motion Estimation

t = 0 t = 1 t = 2

t = 3 t = 4 t = 5
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Derivation of Weight for Regularization in Denoising Problem

Additive Gaussian Noise Model

f = u + η, η(x) ∼ N (0, σ2) (5)

Bayesian Formulation

p(u|f ) ∝ p(f |u) p(u) (6)

Maximum A Posteriori estimation

u∗ = argmax
u

p(u|f ) = argmax
u

p(f |u) p(u) (7)

= argmax
u

log p(f |u) + log p(u) (8)

= argmin
u

− log p(f |u)− log p(u) (9)
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Derivation of Weight for Regularization in Denoising Problem

Likelihood and Prior probabilities

p(f (x)|u(x)) ∝ exp

(
− 1

2σ2

∫
Ω
(f (x)− u(x))2 dx

)
(10)

p(u(x)) ∝ exp

(
− 1

2µ2

∫
Ω
|∇u(x)|2 dx

)
(11)

Energy Functional

E (u) =
1

2σ2

∫
Ω
(f (x)− u(x))2 dx +

1

2µ2

∫
Ω
|∇u(x)|2 dx (12)

=

∫
Ω
(f (x)− u(x))2 dx +

σ2

µ2

∫
Ω
|∇u(x)|2 dx (13)
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Illustrative Motivation in Image Segmentation

(a) input image (b) segmentation

(c) residual (d) residual variance
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Regularization via Interaction between Model and Data

� Prior works generally consider static image features such as

edges only from the data in determining regularization

� It is desired to consider both the current state of the

observation and the underlying model for the regularization

scheme

� We propose an adaptive regularization scheme that considers

both spatially and temporarily varying statistics
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Adaptive Regularization



Adaptive Regularization

min
u
Dλ(u) +Rλ(u) (14)

Dλ(u) =
∑
x∈Ω

λ(u(x)) ρ(u(x)) (15)

Rλ(u) =
∑
x∈Ω

(1− λ(u(x))) γ(u(x)) (16)

� ρ : Ω → R measures data fidelity

� γ : Ω → R measures regularity

� λ : Ω → R modulates ρ and γ
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Bayesian criterion - Maximum A Posteriori

u∗ = argmax
u

p(u|f ) ∝ ℓ(u) q(u) (17)

ℓ(u) = p(f |u) (18)

q(u) = p(u) (19)

� u is a solution for the object of interest

� f is the observation

� ℓ is a likelihood function

� q is a prior function
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Bayesian criterion - Adaptive Regularization

u∗ =argmax
u

ℓ(u)λ(u) q(1−λ(u))(u) (20)

λ(u(x)) ∝ ℓ(u(x)) (21)

� λ is determined by the annealing schedule that depends on

the solution u pointwise
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Bayesian criterion - Adaptive Regularization

u∗ = argmax
u

ℓ(u)λ(u) q(1−λ(u))(u) (22)

= argmin
u

∫
Ω
e−

ρ(u)
β ρ(u) dx +

∫
Ω

(
1− e−

ρ(u)
β

)
γ(u)dx , (23)

� ℓ(u(x)) = e−ρ(u(x))

� q(u(x)) = e−γ(u(x))

� λ(u(x)) = e−
ρ(u(x))

β where β > 0 is a control parameter for the

variance of ρ(u)
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Energy Functional with Adaptive Regularization

E(u;β) =
∫
Ω
λ(u(x)) ρ(u(x)) + (1− λ(u(x))) γ(u(x))dx (24)

λ(u(x)) = exp

(
−ρ(u(x))

β

)
(25)

ρ(u(x)) is large

large residual

λ(u(x)) is small

more rely on the

regularization

ρ(u(x)) is small

small residual

λ(u(x)) is large

more rely on

the data fidelity
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Sparsity Constraint on Weighting Function λ

ν(x) = exp

(
−ρ(u(x))

β

)
(26)

λ(x) = argmin
λ

1

2
∥ν(x)− λ∥22 + α∥λ∥1 (27)

� β > 0 is a control parameter related to the variation of the

residual ρ(u)

� 0 < α < 1 is a constant parameter to control the degree of

sparsity in the weighting function λ

� λ is obtained by the solution of the Lasso problem
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Application to Imaging Problems



Huber-Huber model

Energy Functional

E(u) =
∫
Ω
λ(x) ρ(u(x))dx +

∫
Ω
(1− λ(x)) γ(u(x))dx (28)

ρ(u(x)) = ϕµ(u(x); f (x)) (29)

γ(u(x)) = ϕη(∇u(x)) (30)

Huber function

ϕµ(x) =

 1
2µx

2 : |x | ≤ µ,

|x | − µ
2 : |x | > µ

(31)

where µ is a threshold parameter
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Image Segmentation

Data Fidelity

Dλi
(ui , ci ) =

∫
Ω
λi (x) ρ(ui (x), ci ) dx (32)

ρ(ui (x), ci ) = ϕµ(f (x)− ci ) ui (x) (33)

Regularization

Rλi
(ui ) =

∫
Ω
(1− λi (x)) γ(ui (x))dx (34)

γ(ui (x)) = ϕη(∇ui (x)) (35)

Weighting Function

λi (x) = exp

(
−ρ(ui (x), ci )

β

)
: Lasso (36)
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Optical Flow

Data Fidelity

Dλ(u) =

∫
Ω
λ(x) ρ(u(x))dx (37)

ρ(u) = ϕµ(ft(x)−∇f1(x + u0(x)) · (u(x)− u0(x))) (38)

Regularization

Rλ(u) =

∫
Ω
(1− λ(x)) γ(u(x))dx (39)

γ(u(x)) = ϕη(∇u1(x)) + ϕη(∇u2(x)) (40)

Weighting Function

λ(x) = exp

(
−ρ(u(x))

β

)
: Lasso (41)
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Denoising

Data Fidelity

Dλ(u) =

∫
Ω
λ(x) ρ(u(x))dx (42)

ρ(u(x)) = ϕµ(f (x)− u(x)) (43)

Regularization

Rλ(u) =

∫
Ω
(1− λ(x)) γ(u(x))dx (44)

γ(u(x)) = ϕη(∇u(x)) (45)

Weighting Function

λ(x) = exp

(
−ρ(u(x))

β

)
: Lasso (46)
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Energy Optimization



Alternating Direction method of Multipliers (ADMM)

∫
Ω
λ(x) ρ(u(x))dx +

∫
Ω
(1− λ(x)) γ( u(x) ) dx∫

Ω
λ(x) ρ(u(x))dx +

∫
Ω
(1− λ(x)) γ( v(x) ) dx , subject to u = v ,∫

Ω
λ(x) ρ(u(x))dx +

∫
Ω
(1− λ(x)) γ( v(x) ) dx +

θ

2
∥u − v + w∥22

� We initially apply the variable splitting with a new variable v

such that u = v

� We add a quadratic constraint leading to the unconstrained

augmented Lagrangian
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Optimization of Huber Function

Moreau-Yosida regularization of a non-smooth function | · |

ϕµ(x) = inf
r

{
|r |+ 1

2µ
(x − r)2

}
= proxµg (x) (47)

� r is an auxiliary variable to be minimized

� proxµg (x) is the proximal operator associated with a convex

function g(x) = ∥x∥1
� The solution of the above proximal operator proxµg (x) can be

obtained by the soft shrinkage operator T (x |µ):

T (x |µ) =


x − µ : x > µ

0 : ∥x∥1 ≤ µ

x + µ : x < −µ

(48)
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Optimization Algorithm via ADMM

rk+1 := argmin
r

ρ(uk , r)

zk+1 := argmin
z

γ(vk , z)

uk+1 := argmin
u

∫
Ω
λk+1 ρ(u, rk+1)dx +

θ

2
∥u − vk+1 + wk∥22

vk+1 := argmin
v

∫
Ω
(1− λk+1) γ(v , zk+1) dx +

θ

2
∥uk − v + wk∥22

wk+1 := wk + uk+1 − vk+1

νk+1 := exp

(
−ρ(uk+1, rk+1)

β

)
λk+1 := argmin

λ

1

2
∥νk+1 − λ∥22 + α∥λ∥1
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Experimental Results



Comparison of Image Model - Bipartitioning
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(a) accuracy (b) error

� Images are taken from Berkeley segmentation dataset

� Bi-partitioning segmentation is performed based on TV-L1

(green), TV-L2 (blue), our H2 (red) models

� F-measure (left) and error (right) are computed over iteration
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Adaptive Regularization - Segmentation

(a) Input (b) Ours (adaptive) (c) Zoom in of (b)

(d) Small (global) (e) Large (global) (f) Zoom in of (e)

� Illustrative comparison of constant and adaptive regularization
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Experimental Results - Segmentation

(a) Input (b) FL1 (c) TV2 (d) VTV3 (e) PC4 (f) Ours
1sundaramoorthi2014fast.
2zach2008fast.
3lellmann:continuous:siam:2011.
4chambolle2012convex.
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Quantitative Evaluation (Average Angular Error) - Motion

(a) Input (b) GT (c) HS5 (d) TV6 (e) HTV7 (f) Ours
5horn1981determining.
6zach2007duality.
7werlberger2009anisotropic.
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Deep Learning Application - Depth Prediction
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Deep Learning Application - Depth Prediction (KITTI)
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Adaptive Regularization in Deep Learning framework

� Training data : {(xi , yi )}ni=1, xi ∈ X , yi ∈ Y

� Prediction function : hw : X → Y

� Model parameters : w = (w1,w2, · · · ,wm) ∈ Rm

L(w) =
1

n

n∑
i=1

fi (w) + λ γ(w) (49)

� fi (w) is a data fidelity incurred by a set of model parameters

w for a sample pair (xi , yi )

� fi (w) measures discrepancy between hw (xi ) and yi

� γ(w) is a regularization on model parameters w
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Adaptive Regularization in Deep Learning framework

Static Regularization (Weight Decay)

L(w) = ρ(w) +
λ

2
∥w∥22, (50)

Adaptive Regularization

L(w) =
1

n

n∑
i=1

fi (w) +
λ

2
∥θ ⊙ w∥22, (51)

� θ = (θ1, θ2, · · · , θm) ∈ Rm

� ⊙ denotes the Hadamard product

� θ ⊙ w = (θ1w1, θ2w2, · · · , θmwm)
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Adaptive Weight Decay

Weight Decay based on Residual

g̃ t
j =

|g t
j | − µt

l

σt
l

, (52)

θtj ∝ g̃ t
j , (53)

� g t
j is the gradient of the data fidelity with respect to the

parameter wj at iteration t

� l denotes the index of the layer that includes the parameter wj

� µt
l and σt

l denotes the mean and standard deviation of all the

gradient norms for the parameters within the layer l at

iteration t

32



Adaptive Weight Decay

Adaptive Decay Rate

θtj = S(g̃ t
j ;α) =

2

1 + exp(−α g̃ t
j )
, (54)

� S is a scaled signmoid function

� α determines the slope of the decay rate

� g̃ t
j is normalized to have mean 0 and standard deviation 1.

� θtj ranges from 0 to 2

33



Numerical Results - Validation Accuracy for MNIST
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Numerical Results - Validation Accuracy for Fashion-MNIST
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Numerical Results - Validation Accuracy for CIFAR-10
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Summary



Summary

� We have introduced an adaptive regularization scheme based

on the current local data fit to the model during the iterative

optimization

� We have presented classical imaging problems based on the

Huber-Huber model

� We have presented an efficient optimization algorithm based

on ADMM framework

� Numerical experiments have demonstrated the effectiveness

and robustness of the adaptive regularization scheme
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