

Path Planning Algorithm: Improved Rapidly-exploring Random Tree

Aphilak Lonklang

PhD Student Department of Artificial Intelligence

Improved Rapidly Exploring Random Tree with Bacterial Mutation and Node Deletion for Offline Path Planning of Mobile Robot

Lonklang, A.; Botzheim, J. Improved Rapidly Exploring Random Tree with Bacterial Mutation and Node Deletion for Offline Path Planning of Mobile Robot. Electronics 2022, 11, 1459. <u>https://doi.org/10.3390/electronics11091459</u>

Rapidly Exploring Random Tree*

• RRT* is a random sampling tree structure search algorithm.

Illustration of RRT* Algorithm

Unusable Node

- Unusable nodes are the random nodes that fall into the obstacle regions.
- These nodes are not useful for iteration

Unusable Nodes

- The number of generated unusable nodes is over 40% of RRT*.
- The main idea to improve the efficiency of the RRT* algorithm is to reduce the unusable nodes from the iteration and let the iteration flow continue with only usable nodes.

Unusable Node

Obstacle region

ELTE | FACULTY OF

Global Environment

Im	proved	Algo	rithm
		0	

Algorithm 2 Improved RRT* with Bacterial Mutation and Node Deletion Algorithms

Delete rand Map(i) from rand Map vector

Initialize qstart and qgoal

for i < MaxIteration do

 $q_{rand} \leftarrow random node \frac{randMap}{randMap}$

 $q_{near} \leftarrow \text{find nearest node from Tree}$

if obstacle free between q_{near} and q_{new} then

 $q_{new} \leftarrow$ steer from q_{near} Find minimum cost from q_{min} and q_{new} in radius of R Add q_{new} to Tree

if distance between q_{new} and $q_{goal} \le D$ then Stop iteration

Return Tree

Define Path as a Bacterium
for <i>i</i> < size of bacterium do
Bacterial Mutation
Return Fine-tuned Bacterium
for <i>i</i> < size of bacterium do
Node Deletion
Return Final Path
End

21	22	23	24	25
(0,4)	(1,4)	(2,4)	(3,4)	(4,4)
16	17	18	19	20
(0,3)	(1,3)	(2,3)	(3,3)	(4,3)
11	12	13	14	15
(0,2)	(1,2)	(2,2)	(3,2)	(4,2)
6	7	8	9	10
(0,1)	(1,1)	(2,1)	(3,1)	(4,1)
1	2	3	4	5
(0,0)	(1,0)	(2,0)	(3,0)	(4,0)

Stretch to Vector

Post-processing Algorithm

Global Environment

2023. 07. 18.

11

Simple global environment results. (a) Traditional RRT* (red) Traditional RRT* with bacterial mutation and Node Deletion algorithm (blue); (b) proposed RRT* (red); proposed RRT* with Bacterial Mutation and Node Deletion algorithm (blue).

Complex global environment Results. (**a**) Traditional RRT* (red); traditional RRT* with Bacterial Mutation and Node Deletion algorithm (blue); (**b**) proposed RRT* (red); proposed RRT* with Bacterial Mutation and Node Deletion algorithm (blue).

A Rapidly-Exploring Random Tree Algorithm by Reducing Random Map Size

2023 9th International Conference on Automation, Robotics and Applications (ICARA 2023) February 10-12, 2023 | Abu Dhabi, United Arab Emirates

Improved Algorithm

- An Improvement for Improved Algorithm for Path Planning Task of Mobile Robot
- To avoid the density of random nodes and improve the exploration of the algorithm

Algorithm 3 Improvement Algorithm Map = ReadMap from file (.bmp) randMap = StretchMap from maxtrix to row vector for i < Length(randMap) do if randMap(i) is an obstacle region then Delete randMap(i) from randMap vector Initialize qstart and qgoal for i < MaxIteration do $q_{rand} \leftarrow random node randMap$ $q_{near} \leftarrow$ find nearest node from Tree if obstacle free between q_{near} and q_{new} then $q_{new} \leftarrow \text{steer from } q_{near}$ Find minimum cost from q_{min} and q_{new} in radius of R Add qnew to Tree Remove q_{new} from randMap if distance between q_{new} and $q_{goal} \leq D$ then Stop iteration **Return Tree** Define Path as a Bacterium for *i* < size of bacterium do **Bacterial Mutation Return Fine-tuned Bacterium** for *i* < size of bacterium do Node Deletion **Return Final Path** End

• We combined the improvement algorithm with the Bacterial Mutation and Node Deletion algorithms

Proposed RRT* (red) Proposed RRT* with Bacterial Mutation and Node Deletion Algorithms (blue); Conference Paper

2023.07.18.

17

Experimental Results of Complex Environment

Proposed RRT* (red) Proposed RRT* with Bacterial Mutation and Node Deletion Algorithms (blue); Conference Paper

(b) Proposed RRT* with Reduced Random Map Size

Computational Results

Results	Traditional	Improved	Proposed	
	RRT*	RRT*	RRT*	BiRRT
Simple Environment				
Iterations	609	353	152	41
Path Length	120	120	120	141
Computational Time (s)	2.520	1.808	1.455	0.578
Complex Environment				
Iterations	2791	1835	1423	614
Path Length	274	270	264	315
Computational Time (s)	16.152	13.539	10.395	5.960

Implementing to Real Robot

• The path planning result from a postprocessing algorithm was sent to TurtleBot3-Burger by MATLAB programming via Robot Operating System.

Unknown Static Obstacle Avoidance

2023.07.18.

Result: Store to Station 1

First Path Planning Result

New Path Planning

23

Result: Store to Station 1

2023.07.18.

24

Thank you for your attention

